scholarly journals The Rose Windows of Gothic Cathedrals: Art, Symmetry and Beyond

2014 ◽  
Vol 70 (a1) ◽  
pp. C1424-C1424
Author(s):  
Cele Abad-Zapatero

The magnificent rose windows of the Gothic cathedrals have been the object of wonder and fascination to architects, artists and human beings alike, since they were used to emphasize the splendor of Gothic architecture, its lightness of forms and luminosity of interiors. There is considerable amount of literature on the theme including studies on the stone tracery and the stained glass, and a website created by a prominent author in the field (www.therosewindow.com, [1]) is an excellent resource. A brief reference in the classic book Symmetry by H. Weyl [2] suggested that rose windows were indeed excellent examples of planar point group symmetry. However, a rigorous and systematic study of this particular facet of these masterpieces has never been done. Preliminary results of the frequency of different symmetrical arrangements for more than five hundred windows have been recently published [3] and will be presented. In addition, detailed analysis of certain examples of rose windows and iconic macromolecular structures suggest that various symmetrical figures and entities that are part of our world can have symbolic meaning. They can be described by the rigorous framework of group theory in mathematics but they have also been used through history to convey different thoughts, insights and perceptions of the artists (and scientists) as designers and executors of the cosmological view of the times. A project aimed at extending these studies in the future will be presented.

2018 ◽  
Vol 10 (2) ◽  
pp. 409-434
Author(s):  
Ibnu Chudzaifah

Pondok Pesantren is one of the Islamic educational institutions that aim to form human beings who have noble character, so that created a human who has a balance between physical and spiritual. Some educational institutions offer various models of learning to balance the current development so that its existence is still recognized by the community. While boarding school in dealing with the development of the times, has a commitment to make new innovations by presenting the pattern of education that can give birth to a reliable Human Resources. Especially pesantren currently has a challenging enough weight in facing the era of "Demographic Bonus". Demographic bonus is a phenomenon in which the structure of the population greatly benefits the community from the side of development in various sectors, because the productive age is more than the non productive age. This means that the dependency burden will decrease with the ratio of 64 percent of the productive age population to bear only 34 percent of the nonproductive age population. With all kinds of scholarships and skills given to students, students are expected to compete in all fields, especially in the face of Indonesia gold in 2020 to 2035.


2020 ◽  
Author(s):  
Xiaojing Xia ◽  
Anupum Pant ◽  
Xuezhe Zhou ◽  
Elena Dobretsova ◽  
Alex Bard ◽  
...  

Fluoride crystals, due to their low phonon energies, are attractive hosts of trivalent lanthanide ions for applications in upconverting phosphors, quantum information science, and solid-state laser refrigeration. In this article, we report the rapid, low-cost hydrothermal synthesis of potassium lutetium fluoride (KLF) microcrystals for applications in solid-state laser refrigeration. Four crystalline phases were synthesized, namely orthorhombic K<sub>2</sub>LuF<sub>5</sub> (Pnma), trigonal KLuF<sub>4</sub> (P3<sub>1</sub>21), orthorhombic KLu<sub>2</sub>F<sub>7</sub> (Pna2<sub>1</sub>), and cubic KLu<sub>3</sub>F<sub>10</sub> (Fm3m), with each phase exhibiting unique microcrystalline morphologies. Luminescence spectra and emission lifetimes of the four crystalline phases were characterized based on the point-group symmetry of trivalent cations. Laser refrigeration was measured by observing both the optomechanical eigenfrequencies of microcrystals on cantilevers in vacuum, and also the Brownian dynamics of optically trapped microcrystals in water. Among all four crystalline phases, the most significant cooling was observed for 10%Yb:KLuF<sub>4</sub> with cooling of 8.6 $\pm$ 2.1 K below room temperature. Reduced heating was observed with 10%Yb:K<sub>2</sub>LuF<sub>5</sub>


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1435
Author(s):  
Victor G. Yarzhemsky

Sr2RuO4 and Fe-pnictide superconductors belong to the same point group symmetry D4h. Many experimental data confirm odd pairs in Sr2RuO4 and even pairs in Fe-pnictides, but opposite conclusions also exist. Recent NMR results of Pustogow et al., which revealed even Cooper pairs in Sr2RuO4, require reconsideration of symmetry treatment of its SOP (superconducting order parameter). In the present work making use of the Mackey–Bradley theorem on symmetrized squares, a group theoretical investigation of possible pairing states in D4h symmetry is performed. It is obtained for I4/mmm , i.e., space group of Sr2RuO4, that triplet pairs with even spatial parts are possible in kz direction and in points M and Y. For the two latter cases pairing of equivalent electrons with nonzero total momentum is proposed. In P4/nmm space group of Fe- pnictides in point M, even and odd pairs are possible for singlet and triplet cases. It it shown that even and odd chiral states with angular momentum projection m=±1 have nodes in vertical planes, but Eg is nodal , whereas Eu is nodeless in the basal plane. It is also shown that the widely accepted assertion that the parity of angular momentum value is directly connected with the spatial parity of a pair is not valid in a space-group approach to the wavefunction of a Cooper pair.


1970 ◽  
Vol 25 (12) ◽  
pp. 1374-1381 ◽  
Author(s):  
W. Kiefer ◽  
H. W. Schrötter

The Raman spectra of four molecules absorbing in the visible region (SnJ4, GeJ4, TiBr4, and TiJ4) are presented. They were excited with a quasi-continuous ruby laser and recorded with a special electronic detection system. Except for TiJ4, complete Raman spectra of crystal powder pellets could be obtained for the first time. The assignment reported by previous authors was confirmed by accurate polarization studies of solutions or pure liquid. The assignment is also in the solid state possible on the basis of Td point group symmetry. The fundamental vibrations of TiJ4 in solutions are: ν1 (A1) =162, ν2 (E) =51, ν3 (F2) =319 and ν4 (F2) Y = 67 cm-1


1975 ◽  
Vol 53 (7) ◽  
pp. 723-738 ◽  
Author(s):  
B. C. Sanctuary ◽  
R. F. Snider

The gas kinetic theory of nuclear magnetic relaxation of a polyatomic gas, as formulated in the previous paper, is evaluated for ZX3Y molecules relaxing via a dipolar coupling Hamiltonian. Stress is given to a proper treatment of point group symmetry, here C3v, and the possibility of molecular inversion is included. The detailed formula for the spin traces is however restricted to X nuclei with spin 1/2. A subsequent paper uses these results to elucidate the structure of the high density dependence of T1 forCF3H.


Nanoscale ◽  
2017 ◽  
Vol 9 (30) ◽  
pp. 10596-10600 ◽  
Author(s):  
Lei Xu ◽  
Ziba Zangeneh ◽  
Ravi Yadav ◽  
Stanislav Avdoshenko ◽  
Jeroen van den Brink ◽  
...  

A remarkably large magnetic anisotropy energy of 305 K is computed by quantum chemistry methods for divalent Fe2+ d6 substitutes at Li-ion sites with D6h point-group symmetry within the solid-state matrix of Li3N.


2014 ◽  
Vol 70 (10) ◽  
pp. 178-182 ◽  
Author(s):  
Iwan Zimmermann ◽  
Tony D. Keene ◽  
Jürg Hauser ◽  
Silvio Decurtins ◽  
Shi-Xia Liu

The isostructural title compounds, {(C7H7N2)2[SnI4]}n, (1), and {(C7H5F2N2)2[SnI4]}n, (2), show a layered perovskite-type structure composed of anionic {[SnI4]2−}nsheets parallel to (100), which are decorated on both sides with templating benzimidazolium or 5,6-difluorobenzimidazolium cations, respectively. These planar organic heterocycles mainly form N—H...I hydrogen bonds to the terminal I atoms of the corner-sharing [SnI6] octahedra (point group symmetry 2) from the inorganic layer, but not to the bridging ones. This is in contrast to most of the reported structures of related compounds where ammonium cations are involved. Here hydrogen bonding to both types of iodine atoms and thereby a distortion of the inorganic layers to various extents is observed. For (1) and (2), all Sn—I—Sn angles are linear and no out-of-plane distortions of the inorganic layers occur, a fact of relevance in view of the material properties. The arrangement of the aromatic cations is mainly determined through the direction of the N—H...I hydrogen bonds. The coherence between organic bilayers along [100] is mainly achieved through van der Waals interactions.


MRS Bulletin ◽  
1994 ◽  
Vol 19 (11) ◽  
pp. 28-30 ◽  
Author(s):  
C.N.R. Rao ◽  
Ram Seshadri

By virtue of their unique structures, fullerenes exhibit novel chemical transformations. Particularly pertinent to this article are the interesting properties exhibited by fullerenes in the solid state. These molecules are spherical or near-spherical in shape. Molecules with high point-group symmetry, which are not bound strongly in the solid state, tend to crystallize into structures with long-range periodicity of the molecular centers of mass, but the molecular orientations are random or even dynamically disordered. When dynamically disordered, themolecules rotate about some preferred axis. C60 and C70 satisfy the criteria for such orientationally disordered solids and exhibit rich phase behavior in the solid state. Since C60 has high electron affinity, it forms anion salts with alkali and alkaline-earth metals as well as with strong organic donor molecules. With tetrakis dimethylaminoethylene (TDAE), which is a very powerful electron donor, C60 forms a 1:1 solid that is ferromagnetic. C60-TDAE is the molecular organic ferromagnet with the highest Tc (of 16 K) known to date. Some of the alkali and alkaline-earth fullerides, on the other hand, show superconductivity, with transition temperatures going up to 33K. We shall briefly examine some of these solid-state properties.


2014 ◽  
Vol 70 (7) ◽  
pp. i34-i35 ◽  
Author(s):  
Volker Kahlenberg ◽  
Paul Aichholzer

Single crystals of dithulium disilicate, Tm2Si2O7, were obtained in flux synthesis experiments in the system SiO2–Tm2O3–LiF at ambient pressure. The compound belongs to the group of sorosilicates,i.e.it is based on [Si2O7]-units and crystallizes in the thortveitite (Sc2Si2O7) structure type. The Tm3+cation (site symmetry .2.) occupies a distorted octahedral site, with Tm—O bond lengths in the range 2.217 (4)–2.289 (4) Å. Each of the octahedra shares three of its edges with adjacent [TmO6] groups, resulting in the formation of layers parallel to (001). The individual [SiO4] tetrahedra are more regular,i.e.the differences between the bond lengths between Si and the bridging and non-bridging O atoms are not very pronounced. The layers containing the octahedra and the sheets containing the [Si2O7] groups (point group symmetry 2/m) form an alternating sequence. Linkage is provided by sharing common oxygen vertices.


Sign in / Sign up

Export Citation Format

Share Document