scholarly journals Synthesis, structure and water sorption in Zr metal-organic frameworks

2014 ◽  
Vol 70 (a1) ◽  
pp. C1240-C1240
Author(s):  
Felipe Gándara ◽  
Hiroyasu Furukawa ◽  
Zhang Yue-Biao ◽  
Juncong Jiang ◽  
Wendy Queen ◽  
...  

Metal-organic frameworks (MOFs) based on zirconium secondary building units (SBUs) have proven to have great thermal and chemical stability,[1,2] which make them ideal for their use in different applications. We have prepared a series of six new MOFs made from the Zr6O4(OH)4(-CO2)nsecondary building units (n = 6, 8, 10, or 12) and variously shaped carboxyl organic linkers to make extended porous frameworks, with the aim of studying their performance as water adsorbents. Thus, we have evaluated the water adsorption properties of these new MOFs and other reported porous materials to identify the compounds with the most promising materials for use in applications such as thermal batteries or delivery of drinking water in remote areas. An X-ray single-crystal and a powder neutron diffraction study reveal the position of the water adsorption sites in one of the best performing materials, and highlight the importance of the intermolecular interactions between adsorbed water molecules within the pores.

2021 ◽  
Author(s):  
Matouš Kloda ◽  
Tomáš Plecháček ◽  
Soňa Ondrušová ◽  
Petr Brázda ◽  
Petr Chalupský ◽  
...  

Metal organic frameworks (MOFs) are attracting attention as potential proton conductors. There are two main advantages of MOFs in this application: the possibility of rational design and tuning of the properties, and clear conduction pathways given by their crystalline structure. We hereby present two new MOF structures, ICR-10 and ICR-11, based on tetratopic phosphinate ligands. The structures of both MOFs were determined by 3D electron diffraction. They both crystallize in the P-3 space group and contain arrays of parallel linear pores lined with hydrophilic non-coordinated phosphinate groups. This, together with the adsorbed water molecules, facilitates proton transfer via the Grotthuss mechanism, leading to the proton conductivity up to 4.26∙10-4 S cm-1 for ICR-11.


2021 ◽  
Author(s):  
Yu Kitamura ◽  
Emi Terado ◽  
Zechen Zhang ◽  
Hirofumi Yoshikawa ◽  
Tomoko Inose ◽  
...  

A series of novel metal organic frameworks with lanthanide double-layer-based inorganic subnetworks (KGF-3) was synthesized assisted by machine learning. Pure KGF-3 was difficult to isolate in the initial screening experiments. The synthetic conditions were successfully optimized by extracting the dominant factors for KGF-3 synthesis using two machine-learning techniques. Cluster analysis was used to classify the obtained PXRD patterns of the products and to decide automatically whether the experiments were successful or had failed. Decision tree analysis was used to visualize the experimental results, with the factors that mainly affected the synthetic reproducibility being extracted. The water adsorption isotherm revealed that KGF-3 possesses unique hydrophilic pores, and impedance measurements demonstrated good proton conductivities (σ = 5.2 × 10<sup>−4</sup> S cm<sup>−1</sup> for KGF-3(Y)) at a high temperature (363 K) and high relative humidity (95%).<br>


MRS Advances ◽  
2017 ◽  
Vol 2 (9) ◽  
pp. 519-524 ◽  
Author(s):  
Daiane Damasceno Borges ◽  
Guillaume Maurin ◽  
Douglas S. Galvão

ABSTRACTThermal batteries based on a reversible adsorption/desorption of a working fluid (water, methanol, ammonia) rather than the conventional vapor compression is a promising alternative to exploit waste thermal energy for heat reallocation. In this context, there is an increasing interest to find novel porous solids able to adsorb a high energy density of working fluid under low relative vapor pressure condition combined with an easy ability of regeneration (desorption) at low temperature, which are the major requirements for adsorption driven heat pumps and chillers. The porous crystalline hybrid materials named Metal–Organic Frameworks (MOF) represent a great source of inspiration for sorption based-applications owing to their tunable chemical and topological features associated with a large variability of pore sizes. Recently, we have designed a new MOF named MIL-160 (MIL stands for Materials of Institut Lavoisier), isostructural to CAU-10, built from the assembly of corner sharing aluminum chains octahedra AlO4(OH)2 with the 2,5-furandicarboxylic linker substituting the pristine organic linker, 1,4-benzenedicarboxylate. This ligand replacement strategy proved to enhance both the hydrophilicity of the MOF and its amount of water adsorbed at low p/p0. This designed solid was synthesized and its chemical stability/adsorption performances verified. Here, we have extended this study by incorporating other polar heterocyclic linkers and a comparative computational study of the water adsorption performances of these novel structures has been performed. To that purpose, the cell and geometry optimizations of all hypothetical frameworks were first performed at the density functional theory level and their water adsorption isotherms were further predicted by using force-field based Grand-Canonical Monte Carlo simulations. This study reveals the ease tunable water affinity of MOF for the desired application.


2021 ◽  
Author(s):  
Yu Kitamura ◽  
Emi Terado ◽  
Zechen Zhang ◽  
Hirofumi Yoshikawa ◽  
Tomoko Inose ◽  
...  

A series of novel metal organic frameworks with lanthanide double-layer-based inorganic subnetworks (KGF-3) was synthesized assisted by machine learning. Pure KGF-3 was difficult to isolate in the initial screening experiments. The synthetic conditions were successfully optimized by extracting the dominant factors for KGF-3 synthesis using two machine-learning techniques. Cluster analysis was used to classify the obtained PXRD patterns of the products and to decide automatically whether the experiments were successful or had failed. Decision tree analysis was used to visualize the experimental results, with the factors that mainly affected the synthetic reproducibility being extracted. The water adsorption isotherm revealed that KGF-3 possesses unique hydrophilic pores, and impedance measurements demonstrated good proton conductivities (σ = 5.2 × 10<sup>−4</sup> S cm<sup>−1</sup> for KGF-3(Y)) at a high temperature (363 K) and high relative humidity (95%).<br>


2021 ◽  
Author(s):  
Xinyao Liu ◽  
Yunling Liu

ZMOFs are a subset of MOFs that exhibit zeolite-like topologies. Using molecular building block strategy, many ZMOFs with high stability and excellent performance can be rationally designed and synthesized using different secondary building units.


ChemInform ◽  
2009 ◽  
Vol 40 (29) ◽  
Author(s):  
David J. Tranchemontagne ◽  
Jose L. Mendoza-Cortes ◽  
Michael O'Keeffe ◽  
Omar M. Yaghi

2005 ◽  
Vol 23 (6) ◽  
pp. 425-436
Author(s):  
Toshinori Mori ◽  
Yasushige Kuroda ◽  
Ryotaro Kumashiro ◽  
Koji Hirata ◽  
Hidehiro Toyota ◽  
...  

Interactions between the surfaces of alkaline earth fluorides (CaF2, SrF2 and BaF2) and water molecules were investigated by calorimetric and spectroscopic methods. The exposed surfaces of the alkaline earth fluoride samples, with which the (100) crystalline plane is mainly associated, were found to be fully covered with strongly adsorbed water molecules, resulting in characteristic IR bands at 3684, 2561, 1947 and 1000 cm−1, respectively. This surface was homogeneous towards further water adsorption. The strongly adsorbed water molecules were almost completely desorbed from the surface on evacuating the sample up to 473 K. The heat of immersion in water also increased with increasing pretreatment temperature; this may be attributed to surface rehydration of the alkaline earth fluorides. The state of the surface changed drastically as the pretreatment temperature was increased and stabilized towards incoming water molecules. Thus, the surface formed after evacuation at temperatures greater than 473 K was resistant to hydration even after immersion in water at room temperature. This surface was relatively heterogeneous towards water adsorption, although it behaved homogeneously towards argon adsorption. These facts indicate that strongly adsorbed water molecules appear to be somewhat specific towards the adsorption of further incoming water molecules. The adsorption properties of the (100) plane of alkaline earth fluorides towards water and argon molecules depend strongly on both the electrostatic field strength and the extent of rehydration of the alkaline earth fluoride surface.


2021 ◽  
Author(s):  
Andrew Kuznicki ◽  
Gregory Lorzing ◽  
Eric D Bloch

Metal-organic frameworks (MOFs) of the MIL series of materials have been widely studied as a result of their high tunability and the diversity of structure types that exist for these...


2019 ◽  
Vol 58 (23) ◽  
pp. 7818-7822 ◽  
Author(s):  
Chengdong Peng ◽  
Xueling Song ◽  
Jinlin Yin ◽  
Guiyang Zhang ◽  
Honghan Fei

2020 ◽  
Vol 8 (4) ◽  
pp. 1374-1379 ◽  
Author(s):  
Yutong Wang ◽  
Kai Zhang ◽  
Xiaokang Wang ◽  
Xuelian Xin ◽  
Xiurong Zhang ◽  
...  

An unprecedented three-dimensional (3D) (3,4,5)-czkf topological framework (UPC-38) with one-dimensional (1D) chain secondary building units exhibits strong white light emission.


Sign in / Sign up

Export Citation Format

Share Document