scholarly journals Phase transitions and enhanced conductivity of CaC2under high pressure

2014 ◽  
Vol 70 (a1) ◽  
pp. C159-C159
Author(s):  
Kuo Li ◽  
Haiyan Zheng ◽  
Chris. Tulk ◽  
Ilia Ivanov ◽  
Wenge Yang ◽  
...  

Calcium carbide is widely used in the industry for the production of acetylene and other purposes. Its phase transitions under ambient pressure have been studied since 1930s [1]. In recent years, with the development of high pressure science, its phase transitions under high pressure attracted more attentions [2], and its physical properties such as conductivity and superconductivity were focused [3]. Up to now, most of the researches on CaC2 under high pressure are theoretical, and experimental investigations are expected to figure out the structural transitions. In this work, we investigated the structural transitions of CaC2 (phase I, tetragonal, I4/mmm) up to ~30 GPa by powder XRD, neutron diffraction, and neutron PDF analysis on the recovered samples, and measured the conductivity of CaC2 up to ~20 GPa. XRD data are employed to refine the unit cell parameters, based on which the equation of state is fitted. As identified by series of fittings, the tetragonal phase stabilizes up to 10 GPa, above which it has a minor phase transition. The crystal structures were refined by the structural model of phase I with in-situ neutron diffraction data. Both of the bond length of C-C triple bond and the nearest intergroup C...C distance show a turning point at around 10-12 GPa. The critical pressure is in consistent with the predicted phase transition from phase I to phase VI (monoclinic, I2/m), though the phase VI can't be identified and refined with the data under the current resolution. The resistivity of CaC2 decreases from 1000 Ω·m at 2 GPa to 0.0001 Ω·m at 22 GPa, which can be attributed to the compression of intergroup C...C distance from 0.335nm to 0.315nm. The resistivity-pressure curve also shows a turning point at ~10GPa, corresponding to the phase transition. Above 18 GPa, CaC2 starts to amorphize, which is reversible but sluggish. The C22- may get connected to each other, as observed in the neutron PDF data of the recovered sample.

2021 ◽  
Vol 6 (5) ◽  
Author(s):  
Pawlicki LT

This article presents changes in the viscosity of olive oil during compression. The test was carried out indirectly by measuring the dependence of the resonance frequency of the piezoelectric immersed in olive oil on pressure. For this purpose, for successive pressures, the resonance curves were read and the values of the characteristic frequencies were determined. Viscosity changes were analysed and related to the compression and crystallization taking place in the tested substance. During this research, a phase transition from the liquid phase to the alpha crystalline phase was detected, during which the resonant frequency of the tested piezoelectric reached a minimum and the viscosity related to this frequency reached a maximum. The measurement method developed in this paper can be used to detect the phase transitions of oils subjected to pressure. This may find application in the oil production and high-pressure food preservation industries for which this knowledge is essential for the safe and trouble-free use of their machines.


2000 ◽  
Vol 33 (2) ◽  
pp. 279-284 ◽  
Author(s):  
J.-E. Jørgensen ◽  
J. Staun Olsen ◽  
L. Gerward

ReO3has been studied at pressures up to 52 GPa by X-ray powder diffraction. The previously observed cubicIm3¯ high-pressure phase was shown to transform to a monoclinic MnF3-related phase at about 3 GPa. All patterns recorded above 12 GPa could be indexed on rhombohedral cells. The compressibility was observed to decrease abruptly at 38 GPa. It is therefore proposed that the oxygen ions are hexagonally close packed above this pressure, giving rise to two rhombohedral phases labelled I and II. The zero-pressure bulk moduliBoof the observed phases were determined and the rhombohedral phase II was found to have an extremely large value of 617 (10) GPa. It was found that ReO3transforms back to thePm3¯mphase found at ambient pressure.


2014 ◽  
Vol 70 (a1) ◽  
pp. C763-C763
Author(s):  
Haiyan Zheng ◽  
Kuo Li ◽  
George Cody ◽  
Chris Tulk ◽  
Jamie Molaison ◽  
...  

Successful application of high pressure on synthesis of organic polymer, including the conducting polymer and super hard materials depends on the knowledge of reaction mechanism. The evolution of crystal structure under high pressure especially the structure close to transition pressure is crucial to conclude the reaction mechanism. Nitriles represent a large class of interstellar molecules and are the potential source of amino acids. Understanding its behavior at extreme conditions has gained increasing attention recently. Acetonitrile (CH3CN), the simplest organic compound with C≡N triple bond, can act as a model system for studying the pressure induced polymerization. The phase transition of acetonitrile under high pressure has been studied extensively.[1-3] However, it is still controversial and there is no any detailed discussion about its polymerization mechanism under high pressure. Here, we report the in-situ high pressure Raman spectra and powder neutron diffraction results on CD3CN, which indicates a minor phase transition at 5 GPa. The neutron diffraction shows that CD3CN keeps the orthorhombic phase from 1.66 GPa to 20.58 GPa which is very close to the reaction pressure. The week hydrogen bonding CD...N arranges the molecule into 3-dimensional framework which can be treated as two sets of diamond like structures interpenetrating with each other. Interestingly, the observed N...D distance is 1.984 Å at 20.58 GPa, shorter than the van der Waals distance of N...H (2.75 Å) by 28%. The van der Waals separation is often taken as a reference distance for the molecular instability. Thus, a hydrogen transfer process during the polymerization can be concluded. This deduction is also supported by the solid state NMR and FTIR results of the recovered polymerized CH3CN (p-CH3CN) from high pressure. In addition, the atomic pair distribution function and Raman spectra indicate the p-CD3CN or p-CH3CN has a random packed layer structure with nano-graphene lattice.


CrystEngComm ◽  
2019 ◽  
Vol 21 (30) ◽  
pp. 4444-4456 ◽  
Author(s):  
Nico Giordano ◽  
Christine M. Beavers ◽  
Konstantin V. Kamenev ◽  
William G. Marshall ◽  
Stephen A. Moggach ◽  
...  

The amino acid l-threonine undergoes three phase transitions between ambient pressure and 22.3 GPa which modify both hydrogen bonding and the molecular conformation.


2014 ◽  
Vol 70 (a1) ◽  
pp. C894-C894
Author(s):  
Masakazu Matsumoto ◽  
Kazuhiro Himoto ◽  
Kenji Mochizuki ◽  
Hideki Tanaka

Water distributes ubiquitously among the solar system and outer space in a wide variety of solid forms, i.e. more than ten kinds of crystalline ice, two types of amorphous ice, and clathrate hydrates. These polymorphs often play crucial roles in the planetary geology. Diversity of the stable ices and hydrates also suggests the existence of the various kinds of stable and metastable phases yet to be discovered [1]. Computer simulations and the theoretical treatments are useful to explore them. In this talk, we introduce the phase transitions of ice VII, which is one of the highest-pressure ice phases. The melting curve of ice VII to high-pressure liquid water has not been settled by experiments. We have proposed the intervention of a plastic phase of ice (plastic ice) between ice VII and liquid water, based on molecular dynamics (MD) simulations and the free energy calculations [2], which enables to account for large gaps among the various experimental curves of ice VII. In plastic ice, the water molecules are fixed at the lattice points, while they rotate freely. Interestingly, our additional survey by large-scale MD simulations elucidates that the phase transition between ice VII and plastic ice is first-order at low pressure as it was already predicted, while it is found to be second-order at higher pressures, where a tricritical point joins these phase boundaries together [3]. The critical fluctuations may give a clue for determining the phase boundary experimentally. We also argue about the phase transition dynamics of liquid water to ice VII at their direct phase boundary where metastable plastic ice phase plays an important role.


1991 ◽  
Vol 124 (1) ◽  
pp. 355-360 ◽  
Author(s):  
R. J. Nelmes ◽  
M. I. McMahon ◽  
R. O. Piltz ◽  
N. G. Wright

2017 ◽  
Vol 46 (21) ◽  
pp. 6835-6838 ◽  
Author(s):  
Weiwei Xie ◽  
Michał J. Winiarski ◽  
Tomasz Klimczuk ◽  
R. J. Cava

A trigonal–tetragonal phase transition in SrMn2P2is proposed and confirmed experimentally under high pressure. At ambient pressure, SrMn2P2crystallizes in the primitive trigonal La2O3structure type (space groupP3̄m1) in blue. Under high pressure, the tetragonal ThCr2Si2structure type (space groupI4/mmm) in red is more stable.


Author(s):  
Ewa Patyk-Kaźmierczak ◽  
Michał Kaźmierczak

Benzocaine (BZC), an efficient and highly permeable anaesthetic and an active pharmaceutical ingredient of many commercially available drugs, was studied under high pressure up to 0.78 GPa. As a result, new BZC polymorph (IV) was discovered. The crystallization of polymorph (IV) can be initiated by heating crystals of polymorph (I) at a pressure of at least 0.45 GPa or by their compression to 0.60 GPa. However, no phase transition from polymorph (I) to (IV) was observed. Although polymorph (IV) exhibits the same main aggregation motif as in previously reported BZC polymorphs (I)–(III), i.e. a hydrogen-bonded ribbon, its molecular packing and hydrogen-bonding pattern differ considerably. The N—H...N hydrogen bonds joining parallel BZC ribbons in crystals at ambient pressure are eliminated in polymorph (IV), and BZC ribbons become positioned at an angle of about 80°. Unfortunately, crystals of polymorph (IV) were not preserved on pressure release, and depending on the decompression protocol they transformed into polymorph (II) or (I).


2013 ◽  
Vol 22 ◽  
pp. 612-618 ◽  
Author(s):  
DINESH C. GUPTA ◽  
IDRIS HAMID

ab-initio calculations using fully relativistic pseudo-potential have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. The enthalpy calculations show that these materials undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa for PbS, PbSe, PbTe and PbPo, respectively. Present calculations successfully predicted the location of the band gap at L-point of Brillouin zone as well as the value of the band gap in every case at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalized under high pressures. For this purpose, the electronic structure of these materials has also been computed in parent as well as in high pressure phase.


2000 ◽  
Vol 56 (2) ◽  
pp. 189-196 ◽  
Author(s):  
Stefan Carlson ◽  
Ann-Kristin Larsson ◽  
Franziska E. Rohrer

The ReO3-type structure NbO2F, niobium dioxyfluoride, has been studied at high pressures using diamond anvil cells and synchrotron X-ray radiation. High-pressure powder diffraction measurements have been performed up to 40.1 GPa. A phase transition from the cubic (Pm3¯m) ambient pressure structure to a rhombohedral (R3¯c) structure at 0.47 GPa has been observed. Rietveld refinements at 1.38, 1.96, 3.20, 6.23, 9.00 and 10.5 GPa showed that the transition involves an a − a − a − tilting of the cation–anion coordination octahedra and a change of the anion–anion arrangement to approach hexagonal close packing. Compression and distortion of the Nb(O/F)6 octahedra is also revealed by the Rietveld refinements. At 17–18 GPa, the diffraction pattern disappears and the structure becomes X-ray amorphous.


Sign in / Sign up

Export Citation Format

Share Document