scholarly journals Structure of copper(II) complexes grown from ionic liquids – 1-ethyl-3-methylimidazolium acetate or chloride

Author(s):  
Nikita Yu. Serov ◽  
Valery G. Shtyrlin ◽  
Daut R. Islamov ◽  
Olga N. Kataeva ◽  
Dmitry B. Krivolapov

Crystals of four new copper(II) complexes have been grown from copper(II) acetate/chloride–1-ethyl-3-methylimidazolium acetate/chloride–water systems and characterized by X-ray analysis. The first complex, bis(1-ethyl-3-methylimidazolium) tetra-μ-acetato-bis[chloridocuprate(II)], [Emim]2[Cu2(C2H3O2)4Cl2] (1) (Emim is 1-ethyl-3-methylimidazolium, C6H11N2), contains [Cu2(C2H3O2)4Cl2]2− coordination anions with a paddle-wheel structure and ionic liquid cations. Two of the synthesized complexes are one-dimensional polymers, namely catena-poly[1-ethyl-3-methylimidazolium [[tetra-μ-acetato-dicuprate(II)]-μ-chlorido] monohydrate], {[Emim][Cu2(C2H3O2)4Cl]·H2O} n (2), and catena-poly[1-ethyl-3-methylimidazolium [[tetra-μ-acetato-dicuprate(II)]-μ-acetato]], {[Emim][Cu2(C2H3O2)5]} n (3). In these compounds, the Cu2(C2H3O2)4 units with a paddle-wheel structure are connected to each other through chloride (in 2) or acetate (in 3) anions to form parallel chains, between which cations of ionic liquid are situated. The last compound, bis(1-ethyl-3-methylimidazolium) tetra-μ-acetato-bis[aquacopper(II)] tetra-μ-acetato-bis[acetatocuprate(II)] dihydrate, [Emim]2[Cu2(C2H3O2)4(H2O)2][Cu2(C2H3O2)6]·2H2O (4), contains two different binuclear coordination units (neutral and anionic), connected through hydrogen bonds between water molecules and acetate ions.

2012 ◽  
Vol 68 (12) ◽  
pp. m336-m339 ◽  
Author(s):  
Xiao-Dan Wang ◽  
Guang-Feng Hou ◽  
Ying-Hui Yu ◽  
Jin-Sheng Gao

The title compound, {[Ni(C9H4O6)(C14H14N4)]·0.41H2O}n, exhibits a three-dimensional hydrogen-bonded supramolecular framework. The NiIIcation is six-coordinated in a distorted triangular prism defined by two N atoms from two 1,3-bis(imidazol-l-ylmethyl)benzene (bix) ligands and four O atoms from two 5-carboxybenzene-1,3-dicarboxylate (HBTC) dianions. The bix molecules and HBTC dianions both act as bidentate ligands, linking the NiIIcations to form a one-dimensional coordination polymer. A two-dimensional wave-like net is constructed by O—H...O hydrogen bonds linking adjacent chains. Partially occupied solvent water molecules fill the cavities and link these layers to form a three-dimensional supramolecular structureviaO—H...O hydrogen bonds. The title compound was also characterized by powder X-ray diffraction and thermogravimetric analysis.


Author(s):  
Kaixin Li ◽  
Limin Deng ◽  
Shun Yi ◽  
Yabo Wu ◽  
Guangjie Xia ◽  
...  

Hydrogen-bonding (HB) induced by water solvation shell is vital in the chemical and biological systems. Herein, HBs related to the binding behavior of protonic ionic liquids (PIL) with water molecules...


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Malgorzata M. Jaworska ◽  
Andrzej Górak ◽  
Joanna Zdunek

Chitin cannot be dissolved in conventional solvents due to the strong inter- and intrasheet network of hydrogen bonds and the large number of crystalline regions. Some ionic liquids (ILs) have been suggested in the literature as possible solvents for chitin. Seven of them, all having an ethyl group as substituent in the cationic ring, have been tested in this work: [Emim][Cl], [Emim][Br], [Emim][I], [Emim][OAc], [Emim][Lact], [Epyr][I], and [EMS][BFSI]. Chitin was insoluble in [EMS][BFSI] while for all other ILs solubility was limited due to high viscosity of solutions and equilibria have not been reached. Changes in physical structure, particle size distribution, and crystallinity of recovered chitin depended on ionic liquid used. Increase in porosity was observed for chitin treated with [Emim][Cl], [Emim][I], [Emim][Br], and [Emim][Lact]; changes in particle size distribution were observed for [Emim][AcOH] and [EMS][BFSI]; increase in crystallinity was noticed for chitin treated with [Epyr][I] while decrease in crystallinity for [Emim][I] was noticed. All tested ionic liquids were reused four times and changes in FTIR spectra could be observed for each IL.


2012 ◽  
Vol 67 (1) ◽  
pp. 5-10
Author(s):  
Guido J. Reiss ◽  
Martin van Megen

The reaction of bipyridine with hydroiodic acid in the presence of iodine gave two new polyiodide-containing salts best described as 4,4´-bipyridinium bis(triiodide), C10H10N2[I3]2, 1, and bis(4,4´-bipyridinium) diiodide bis(triiodide) tris(diiodine) solvate dihydrate, (C10H10N2)2I2[I3]2 · 3 I2 ·2H2O, 2. Both compounds have been structurally characterized by crystallographic and spectroscopic methods (Raman and IR). Compound 1 is composed of I3 − anions forming one-dimensional polymers connected by interionic halogen bonds. These chains run along [101] with one crystallographically independent triiodide anion aligned and the other triiodide anion perpendicular to the chain direction. There are no classical hydrogen bonds present in 1. The structure of 2 consists of a complex I144− anion, 4,4´-bipyridinium dications and hydrogen-bonded water molecules in the ratio of 1 : 2 : 2. The I144− polyiodide anion is best described as an adduct of two iodide and two triiodide anions and three diiodine molecules. Two 4,4´-bipyridinium cations and two water molecules form a cyclic dimer through N-H· · ·O hydrogen bonds. Only weak hydrogen bonding is found between these cyclic dimers and the polyiodide anions.


2011 ◽  
Vol 391-392 ◽  
pp. 1319-1323
Author(s):  
Cui Zheng ◽  
Lin Li ◽  
Hao Pang ◽  
Zhao Mei Wang ◽  
Na Li

It still remains challenging for effective hydrolysis of chitosan into chitosan oligomers. In this work, a pretreatment was conducted on chitosan by an ionic liquid 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), aiming at improving enzymatic depolymerization of chitosan. X-ray diffraction analysis indicated that the inter- and intra-molecular hydrogen bonds within chitosan molecules were broken by [C4mim]Cl and the crystalline was destroyed. The oligo-chitosan hydrolyzed from IL-pretreated chitosan, coded as COS-IL, showed a DP of 3~5, in contrast to DP 5~8 with oligo-chitosan obtained from untreated chitosan(coded as COS-UN). COS-IL was more effective than COS-UN in inhibiting intestinal spoilage bacterials growth and it has positive effect on the growth of intestinal probiotic bacterials.


2000 ◽  
Vol 55 (3-4) ◽  
pp. 299-316 ◽  
Author(s):  
Dagmar Henschel ◽  
Karna Wijaya ◽  
Oliver Moers ◽  
Armand Blaschette ◽  
Peter G. Jones

Abstract In a study aim ed at the „deconstruction“ of the supramolecular aggregate 3(18C6) · 2HN( SO2Me)2 (1,18C6 = 18-crown-6), which is known to display a ladder structure with two isotactic [18C6 - Me SO2N(H)SO2Me···)∞ polymers forming the uprights and symmetrically N - H···O bonded 18C6 rings providing the rungs, the following crystalline complexes were isolated and (except for 2b) characterized by low-temperature X-ray diffraction: 18C6-ClN (SO2Me)2 (2a, triclinic, space group P1̅, Z = 2), 18C6-PhN (SO2Me)2 (2b), 18C6 -MeN(SO2Me)2 (3, monoclinic, P21/c, Z = 8), Bz18C6-HN(SO2Me)2 (4, Bz18C6 = benzo-18-crown-6, monoclinic, P21/n, Z = 4), 18C6-2 MeN (SO2Me)2 (5, triclinic, P1̅, Z = 1), 18C6-Me2SO- HN( SO2Me) (SO2Ph) (13, triclinic, P1̅, Z = 2), and 18C6-H2OMe2SO·2HN(SO2Me)2 (14, triclinic, P1̅, Z = 2). Each of the one-dimensional polymers 2a (syndiotactic), 3 (disyndiotactic) and 4 (isotactic) mimics a single upright of 1; in contrast to 1 and 2a, where the intra-catemer connectivity solely relies on S - Me ··· crow n and crown ··· O = S hydrogen bonds, this bonding system is reinforced in 3 by N -Me ··· crown and in 4 by N - H ··· crown hydrogen bonds. Complex 5 is monomeric and matches a fragment formally extruded from the catemer 3; moreover, 3 and 5 represent a rare case of two structurally characterized 18C6 complexes containing the same uncharged guest species in distinct molecular ratios. The surprising structure of the quaternary adduct 14 exhibits an [18C6 ··· MeSO2N(H)SO2Me ··· ]∞ chain, which can be regarded both as an isolated, though unmodified upright from the ladder 1 and, being syndiotactic, as a stereochemical analogue of 2a; the potentially rung-forming *NH functions in the chain are blocked by hydrogenbonded side chains of the type * N - H ··· water ··· sulfoxide ··· H - N (SO2Me)2. The ternary complex 13 consists of chains [18C6 ··· Me2SO ··· H - N (SO2Ph)SO2Me···]∞ and is not closely related to the other structures


IUCrData ◽  
2020 ◽  
Vol 5 (10) ◽  
Author(s):  
Erika Samolová ◽  
Jan Fábry

The crystal structure of the title complex, [Pb3(C4H7O2)6(H2O)2] n , was redetermined on basis of modern CCD-based single-crystal X-ray data at 120 K. The current study basically confirms the previous report [Fallon et al. (1997). Polyhedron, 16, 19–23] at 190 K, but with higher accuracy and precision. In particular, positional disorder of one of the 2-methylpropanoate anions over two sets of sites was resolved, showing a refined ratio of the disorder components of 0.535 (9):0.465 (9). The three independent cations in the structure have coordination numbers of [7 + 1], [6 + 1], and [5 + 3], with O atoms belonging either to carboxylate groups or water molecules. This arrangement leads to the formation of sheets parallel to (\overline{1}01), whereby the hydrophobic 2-methylpropanyl groups of the anions are oriented above and below the hydrophilic sheets to form a layered structure. Within a sheet, hydrogen bonds of the type Owater—H...O are formed, whereas the hydrophobic groups between adjacent layers interact through van der Waals forces.


2019 ◽  
Vol 31 (8) ◽  
pp. 1755-1761
Author(s):  
K. Naresh ◽  
B.N. Sivasankar

A new copper complex of pyridine-2,6-dicarboxylate containing hydrazinium cation, formulated as (N2H5)2[Cu(PDC)2]·4H2O (PDC = pyridine-2,6-dicarboxylate) has been synthesized from copper(II) nitrate, hydrazine hydrate and pyridine-2,6-dicarboxylic acid as a single crystal and characterized by elemental analysis and spectroscopic (IR and UV-visible), thermal (TG/DTG), single crystal X-ray diffraction and biological studies. A six-coordinate complex with a distorted octahedral geometry around Cu(II) ion is proposed and confirmed by X-ray single crystal method. The structure reveals that two pyridine-2,6-dicarboxylate species acting as tridentate ligands and hydrazinium cation present as a counter ion along with non-coordinated four water molecules. The structural units of copper(II) is mutually held by the hydrogen bonds and π···π and C–O···π interactions. The copper(II) complex is connected to one another via O–H···O hydrogen bonds, forming water clusters, which plays an important role in the stabilization of the crystal structure. In the water clusters, the water molecules are trapped by the cooperative association of coordination interactions as well as hydrogen bonds. Both cation and anion interactions and crystal from various types of intermolecular contacts and their importance were explored using Hirshfeld surface analysis. This indicates that O···H/H···O interactions are the superior interactions conforming excessive H-bond in the molecular structure. The interaction of copper(II) complex with calf thymus DNA (CT-DNA) was investigated by electronic absorption spectroscopic technique. The electronic evidence strongly shows that the compound interacts with calf thymus through intercalation with a binding constant of Kb = 5.7 × 104 M–1.


2019 ◽  
Vol 25 (3) ◽  
pp. 276-280
Author(s):  
Canan URAZ

In this study, electroless nickel (EN) plating on acrylonitrile butadiene styrene (ABS) engineering plastic using room temperature ionic liquids (RTIL) was studied. Electroless plating is a fundamental step in metal plating on plastic. This step makes the plastic conductive and makes it possible to a homogeneous and hard plating without using any hazardous and unfriendly chemical such as palladium, tin, etc. In the industry there are many distinct chemical materials both catalysts and activation solutions for the electroless bath which is one of the most important parts of the process. In this study the effects of the ionic liquid, plating time, and sand paper size were investigated on electroless nickel plating. The etching and the plating processes were performed with environmentally friendly chemicals instead of the chromic and sulphuric acids used in the traditional processes. Experiments were carried out with and without ionic liquid, EMIC, 1-ethyl-3-methyl imidazolium chloride (C6H11N2Cl), and with 400, 500 and 800 grit sandpaper with the application of the sand attrition process and 70, 80, and 90 °C bath temperatures with 30, 60, and 90 minutes of deposition time. The surface morphology and the thickness of deposit analysis were performed using the Fischer scope X-Ray XDL-B System, X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM). Due to the results of the experiments and analysis, the electroless nickel plating on ABS plastic was a success. The best plating was obtained at 5.010 μm as the maximum plating thickness, at 90 min of plating time and 80 °C as the plating bath temperature for electroless nickel plating on ABS plastic whit the surface activated with 800 grit sandpaper using EMIC ionic liquid. DOI: http://dx.doi.org/10.5755/j01.ms.25.3.20116


2014 ◽  
Vol 70 (7) ◽  
pp. 668-671 ◽  
Author(s):  
Zhi-Hui Zhang ◽  
Jin-Long Wang ◽  
Ning Gao ◽  
Ming-Yang He

The novel title organic salt, 4C5H7N2+·C24H8O84−·8H2O, was obtained from the reaction of perylene-3,4,9,10-tetracarboxylic acid (H4ptca) with 4-aminopyridine (4-ap). The asymmetric unit contains half a perylene-3,4,9,10-tetracarboxylate (ptca4−) anion with twofold symmetry, two 4-aminopyridinium (4-Hap+) cations and four water molecules. Strong N—H...O hydrogen bonds connect each ptca4−anion with four 4-Hap+cations to form a one-dimensional linear chain along the [010] direction, decorated by additional 4-Hap+cations attached by weak N—H...O hydrogen bonds to the ptca4−anions. Intermolecular O—H...O interactions of water molecules with ptca4−and 4-Hap+ions complete the three-dimensional hydrogen-bonding network. From the viewpoint of topology, each ptca4−anion acts as a 16-connected node by hydrogen bonding to six 4-Hap+cations and ten water molecules to yield a highly connected hydrogen-bonding framework. π–π interactions between 4-Hap+cations, and between 4-Hap+cations and ptca4−anions, further stabilize the three-dimensional hydrogen-bonding network.


Sign in / Sign up

Export Citation Format

Share Document