scholarly journals Crystal structure and molecular docking study of (E)-2-{[(E)-2-hydroxy-5-methylbenzylidene]hydrazinylidene}-1,2-diphenylethan-1-one

Author(s):  
Sevgi Kansiz ◽  
Digdem Tatlidil ◽  
Necmi Dege ◽  
Feyzi Alkim Aktas ◽  
Samir Osman Mohammed Al-Asbahy ◽  
...  

The title compound, C22H18N2O2, is a Schiff base that exists in the phenol–imine tautomeric form and adopts an E configuration with respect to the C=N bond. The molecular structure is stabilized by an O—H...N hydrogen bond, forming an S(6) ring motif. In the crystal, pairs of C—H...O hydrogen bonds link the molecules to form inversion dimers. Weak π–π stacking interactions along the a-axis direction provide additional stabilization of the crystal structure. The molecule is non-planar, the aromatic ring of the benzaldehyde residue being nearly perpendicular to the phenyl and 4-methylphenol rings with dihedral angles of 88.78 (13) and 82.26 (14)°, respectively. A molecular docking study between the title molecule and the COVID-19 main protease (PDB ID: 6LU7) was performed, showing that it is a potential agent because of its affinity and ability to adhere to the active sites of the protein.

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7622
Author(s):  
Youghourta Belhocine ◽  
Seyfeddine Rahali ◽  
Hamza Allal ◽  
Ibtissem Meriem Assaba ◽  
Monira Galal Ghoniem ◽  
...  

The encapsulation mode of dexamethasone (Dex) into the cavity of β-cyclodextrin (β-CD), as well as its potential as an inhibitor of the COVID-19 main protease, were investigated using density functional theory with the recent dispersion corrections D4 and molecular docking calculations. Independent gradient model and natural bond orbital approaches allowed for the characterization of the host–guest interactions in the studied systems. Structural and energetic computation results revealed that hydrogen bonds and van der Waals interactions played significant roles in the stabilization of the formed Dex@β-CD complex. The complexation energy significantly decreased from −179.50 kJ/mol in the gas phase to −74.14 kJ/mol in the aqueous phase. A molecular docking study was performed to investigate the inhibitory activity of dexamethasone against the COVID-19 target protein (PDB ID: 6LU7). The dexamethasone showed potential therapeutic activity as a SARS CoV-2 main protease inhibitor due to its strong binding to the active sites of the protein target, with predicted free energy of binding values of −29.97 and −32.19 kJ/mol as calculated from AutoDock4 and AutoDock Vina, respectively. This study was intended to explore the potential use of the Dex@β-CD complex in drug delivery to enhance dexamethasone dissolution, thus improving its bioavailability and reducing its side effects.


2021 ◽  
Vol 25 (3) ◽  
pp. 271-282
Author(s):  
Didik Priyandoko ◽  
◽  
Wahyu Widowati ◽  
Mawar Subangkit ◽  
Diana Jasaputra ◽  
...  

The 2019 novel coronavirus (2019-nCoV) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly from its origin in Wuhan City, Hubei Province, China, to the rest of the world. The efficacy of herbal treatment in the control of contagious disease was demonstrated during the 2003 outbreak of severe acute respiratory syndrome (SARS). Natural compound used for this study were isoflavone and myricetin. Molecular docking was performed to analyze binding mode of the compounds towards 12 proteins related to COVID-19. The prediction shows that isoflavone and myricetin have moderate probability of antiviral activity. All of the docked compounds occupied the active sites of the proteins related to COVID-19. Based on QSAR and molecular docking, interactions were predicted with 10 out of 12 potential COVID-19 proteins for myricetin and with 9 out of 12 proteins interactions for isoflavone. A potential disease alleviating action is suggested for isoflavone and myricetin in the context of COVID-19 infection.


2020 ◽  
Author(s):  
pooja singh ◽  
Angkita Sharma ◽  
Shoma Paul Nandi

<p>Within the span of a few months, the severe acute respiratory syndrome coronavirus, COVID-19 (SARS-CoV-2), has proven to be a pandemic, affecting the world at an exponential rate. It is extremely pathogenic and causes communicable infection in humans. Viral infection causes difficulties in breathing, sore throat, cough, high fever, muscle pain, diarrhea, dyspnea, and may lead to death. Finding a proper drug and vaccines against this virus is the need of the hour. The RNA genome of COVID19 codes for the main protease M<sup>pro</sup>, which is required for viral multiplication. To identify possible antiviral drug(s), we performed molecular docking studies. Our screen identified ten biomolecules naturally present in <i>Aspergillus flavus</i> and <i>Aspergillus oryzae</i> fungi. These molecules include Aspirochlorine, Aflatoxin B1, Alpha-Cyclopiazonic acid, Sporogen, Asperfuran, Aspergillomarasmine A, Maltoryzine, Kojic acid, Aflatrem and Ethyl 3-nitropropionic acid, arranged in the descending order of their docking score. Aspirochlorine exhibited the docking score of – 7.18 Kcal/mole, higher than presently used drug Chloroquine (-6.2930522 Kcal/mol) and out of ten ligands studied four has docking score higher than chloroquine. These natural bioactive compounds could be tested for their ability to inhibit viral growth <i>in- vitro</i> and <i>in-vivo</i>.<b> </b></p>


2020 ◽  
Author(s):  
Anurag Agrawal ◽  
Nem Kumar Jain ◽  
Neeraj Kumar ◽  
Giriraj T Kulkarni

This study belongs to identification of suitable COVID-19 inhibitors<br><div><br></div><div>Coronavirus became pandemic very soon and is a potential threat to human lives across the globe. No approved drug is currently available therefore an urgent need has been developed for any antiviral therapy for COVID-19. For the molecular docking study, ten herbal molecules have been included in the current study. The three-dimensional chemical structures of molecules were prepared through ChemSketch 2015 freeware. Molecular docking study was performed using AutoDock 4.2 simulator and Discovery studio 4.5 was employed to predict the active site of target enzyme. Result indicated that all-natural molecules found in the active site of enzyme after molecular docking. Oxyacanthine and Hypericin (-10.990 and -9.05 and kcal/mol respectively) have shown good binding efficacy among others but Oxyacanthine was the only natural product which made some of necessary interactions with residues in the enzyme require for target inhibition. Therefore Oxyacanthine may be considered to be potential inhibitor of main protease enzyme of virus but need to be explored for further drug development process. <br></div>


Author(s):  
Trina Ekawati Tallei ◽  
Sefren Geiner Tumilaar ◽  
Nurdjannah Jane Niode ◽  
Fatimawali Fatimawali ◽  
Billy Johnson Kepel ◽  
...  

Since the outbreak of the COVID-19 (Coronavirus Disease 19) pandemic, researchers have been trying to investigate several active compounds found in plants that have the potential to inhibit the proliferation of SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2). The present study aimed to evaluate bioactive compounds found in plants by using a molecular docking approach to inhibit the Main Protease (Mpro) and Spike (S) glycoprotein of SARS-CoV-2. The evaluation was performed on the docking scores calculated using AutoDock Vina as a docking engine. A rule of five (RO5) was calculated to determine whether a compound meets the criteria as an active drug orally in humans. The determination of the docking score was done by selecting the best conformation of the protein-ligand complex that had the highest affinity (most negative Gibbs' free energy of binding / &Delta;G). As a comparison, nelfinavir (an antiretroviral drug), chloroquine and hydroxychloroquine sulfate (anti-malarial drugs recommended by the FDA as emergency drugs) were used. The results showed that hesperidin, nabiximols, pectolinarin, epigallocatechin gallate, and rhoifolin had better poses than nelfinavir, chloroquine, and hydroxychloroquine sulfate as spike glycoprotein inhibitors. Hesperidin, rhoifolin, pectolinarin, and nabiximols had about the same pose as nelfinavir, but were better than chloroquine and hydroxychloroquine sulfate as Mpro inhibitors. These plant compounds have the potential to be developed as specific therapeutic agents against COVID-19. Several natural compounds of plants evaluated in this study showed better binding free energy compared to nelfinavir, chloroquine, and hydroxychloroquine sulfate which so far are recommended in the treatment of COVID-19. As judged by the RO5 and previous study by others, the compounds kaempferol, herbacetin, eugenol, and 6-shogaol have good oral bioavailability, so they are also seen as promising candidates for the development lead compounds to treat infections caused by SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document