Particle swarm optimization-based optimal real Gabor filter for surface inspection

2019 ◽  
Vol 39 (5) ◽  
pp. 963-972 ◽  
Author(s):  
Hao Wu ◽  
Xiangrong Xu ◽  
Jinbao Chu ◽  
Li Duan ◽  
Paul Siebert

Purpose The traditional methods have difficulty to inspection various types of copper strips defects as inclusions, pits and delamination defects under uneven illumination. Therefore, this paper aims to propose an optimal real Gabor filter model for inspection; however, improper selection of Gabor parameters will cause the boundary between the defect and the background image to be not very clear. This will make the defect and the background cannot be completely separated. Design/methodology/approach The authors proposed an optimal Real Gabor filter model for inspection of copper surface defects under uneven illumination. This proposed method only requires a single filter by calculating the specific convolution energy of the Gabor filter with the image. The Real Gabor filter’s parameter is optimized by particle swarm optimization (PSO), which objective fitness function is maximization of the Gabor filter’s energy average divided by the energy standard deviation, the objective makes a distinction between the defect and normal area. Findings The authors have verified the effect with different iterations of parameter optimization using PSO, the effects with different control constant of energy and neighborhood window size of real Gabor filter, the experimental results on a number of metal surface have shown the proposed method achieved a well performance in defect recognition of metal surface. Originality/value The authors propose a defect detection method based on particle swarm optimization for single Gabor filter parameters optimization. This proposed method only requires a single filter and finds the best parameters of the Gabor filter. By calculating the specific convolution energy of the Gabor filter and the image, to obtain the best Gabor filter parameters and to highlight the defects, the particle swarm optimization algorithm’s fitness objective function is maximize the Gabor filter's average energy divided by the energy standard deviation.

Sensor Review ◽  
2019 ◽  
Vol 39 (5) ◽  
pp. 708-715
Author(s):  
Xiaobin Xu ◽  
Minzhou Luo ◽  
Zhiying Tan ◽  
Min Zhang ◽  
Hao Yang

Purpose This paper aims to investigate the effect of unknown noise parameters of Kalman filter on velocity and displacement and to enhance the measured accuracy using adaptive Kalman filter with particle swarm optimization algorithm. Design/methodology/approach A novel method based on adaptive Kalman filter is proposed. Combined with the displacement measurement model, the standard Kalman filtering algorithm is established. The particle swarm optimization algorithm fused with Kalman is used to obtain the optimal noise parameter estimation using different fitness function. Findings The simulations and experimental results show that the adaptive Kalman filter algorithm fused with particle swarm optimization can improve the accuracy of the velocity and displacement. Originality/value The adaptive Kalman filter algorithm fused with particle swarm optimization can serve as a new method for optimal state estimation of moving target.


2013 ◽  
Vol 303-306 ◽  
pp. 1888-1891
Author(s):  
Yi Zhang ◽  
Ke Wen Xia ◽  
Gen Gu

In order to solve the problems in the optimization of filter parameters, such as large amounts of calculation and the complicated mathematical hypotheses, an approach to optimize filter parameters is presented based on the Hybrid Particle swarm optimization (HPSO) algorithm, which includes the establishing of filter model, setting up the fitness-function and optimizing filter parameters by HPSO algorithm. The application example shows that the optimization method improves the design accuracy and saves calculation, and HPSO algorithm is superior to PSO algorithm in optimization of filter parameters.


2021 ◽  
Vol 13 (13) ◽  
pp. 7152
Author(s):  
Mike Spiliotis ◽  
Alvaro Sordo-Ward ◽  
Luis Garrote

The Muskingum method is one of the widely used methods for lumped flood routing in natural rivers. Calibration of its parameters remains an active challenge for the researchers. The task has been mostly addressed by using crisp numbers, but fuzzy seems a reasonable alternative to account for parameter uncertainty. In this work, a fuzzy Muskingum model is proposed where the assessment of the outflow as a fuzzy quantity is based on the crisp linear Muskingum method but with fuzzy parameters as inputs. This calculation can be achieved based on the extension principle of the fuzzy sets and logic. The critical point is the calibration of the proposed fuzzy extension of the Muskingum method. Due to complexity of the model, the particle swarm optimization (PSO) method is used to enable the use of a simulation process for each possible solution that composes the swarm. A weighted sum of several performance criteria is used as the fitness function of the PSO. The function accounts for the inclusive constraints (the property that the data must be included within the produced fuzzy band) and for the magnitude of the fuzzy band, since large uncertainty may render the model non-functional. Four case studies from the references are used to benchmark the proposed method, including smooth, double, and non-smooth data and a complex, real case study that shows the advantages of the approach. The use of fuzzy parameters is closer to the uncertain nature of the problem. The new methodology increases the reliability of the prediction. Furthermore, the produced fuzzy band can include, to a significant degree, the observed data and the output of the existent crisp methodologies even if they include more complex assumptions.


Sensor Review ◽  
2014 ◽  
Vol 34 (3) ◽  
pp. 304-311 ◽  
Author(s):  
Pengfei Jia ◽  
Fengchun Tian ◽  
Shu Fan ◽  
Qinghua He ◽  
Jingwei Feng ◽  
...  

Purpose – The purpose of the paper is to propose a new optimization algorithm to realize a synchronous optimization of sensor array and classifier, to improve the performance of E-nose in the detection of wound infection. When an electronic nose (E-nose) is used to detect the wound infection, sensor array’s optimization and parameters’ setting of classifier have a strong impact on the classification accuracy. Design/methodology/approach – An enhanced quantum-behaved particle swarm optimization based on genetic algorithm, genetic quantum-behaved particle swarm optimization (G-QPSO), is proposed to realize a synchronous optimization of sensor array and classifier. The importance-factor (I-F) method is used to weight the sensors of E-nose by its degree of importance in classification. Both radical basis function network and support vector machine are used for classification. Findings – The classification accuracy of E-nose is the highest when the weighting coefficients of the I-F method and classifier’s parameters are optimized by G-QPSO. All results make it clear that the proposed method is an ideal optimization method of E-nose in the detection of wound infection. Research limitations/implications – To make the proposed optimization method more effective, the key point of further research is to enhance the classifier of E-nose. Practical implications – In this paper, E-nose is used to distinguish the class of wound infection; meanwhile, G-QPSO is used to realize a synchronous optimization of sensor array and classifier of E-nose. These are all important for E-nose to realize its clinical application in wound monitoring. Originality/value – The innovative concept improves the performance of E-nose in wound monitoring and paves the way for the clinical detection of E-nose.


2011 ◽  
Vol 268-270 ◽  
pp. 934-939
Author(s):  
Xue Wen He ◽  
Gui Xiong Liu ◽  
Hai Bing Zhu ◽  
Xiao Ping Zhang

Aiming at improving localization accuracy in Wireless Sensor Networks (WSN) based on Least Square Support Vector Regression (LSSVR), making LSSVR localization method more practicable, the mechanism of effects of the kernel function for target localization based on LSSVR is discussed based on the mathematical solution process of LSSVR localization method. A novel method of modeling parameters optimization for LSSVR model using particle swarm optimization is proposed. Construction method of fitness function for modeling parameters optimization is researched. In addition, the characteristics of particle swarm parameters optimization are analyzed. The computational complexity of parameters optimization is taken into consideration comprehensively. Experiments of target localization based on CC2430 show that localization accuracy using LSSVR method with modeling parameters optimization increased by 23%~36% in compare with the maximum likelihood method(MLE) and the localization error is close to the minimum with different LSSVR modeling parameters. Experimental results show that adapting a reasonable fitness function for modeling parameters optimization using particle swarm optimization could enhance the anti-noise ability significantly and improve the LSSVR localization performance.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Angelo Marcio Oliveira Sant’Anna

PurposeE-waste management can reduce relevant impact of the business activity without affecting reliability, quality or performance. Statistical process monitoring is an effective way for managing reliability and quality to devices in manufacturing processes. This paper proposes an approach for monitoring the proportion of e-waste devices based on Beta regression model and particle swarm optimization. A statistical process monitoring scheme integrating residual useful life techniques for efficient monitoring of e-waste components or equipment was developed.Design/methodology/approachAn approach integrating regression method and particle swarm optimization algorithm was developed for increasing the accuracy of regression model estimates. The control chart tools were used for monitoring the proportion of e-waste devices from fault detection of electronic devices in manufacturing process.FindingsThe results showed that the proposed statistical process monitoring was an excellent reliability and quality scheme for monitoring the proportion of e-waste devices in toner manufacturing process. The optimized regression model estimates showed a significant influence of the process variables for both individually injection rate and toner treads and the interactions between injection rate, toner treads, viscosity and density.Originality/valueThis research is different from others by providing an approach for modeling and monitoring the proportion of e-waste devices. Statistical process monitoring can be used to monitor waste product in manufacturing. Besides, the key contribution in this study is to develop different models for fault detection and identify any change point in the manufacturing process. The optimized model used can be replicated to other Electronic Industry and allows support of a satisfactory e-waste management.


2013 ◽  
Vol 343 ◽  
pp. 43-49 ◽  
Author(s):  
Jia Ruey Chang

Optimal prioritization of maintenance and rehabilitation (M&R) activities for pavement sections can enable significant time and cost-savings. In this study, we used the particle swarm optimization (PSO) method to achieve optimal prioritization of 135 pavement sections based on eight pavement condition parameters. The parameters included standard deviation (SD) for smoothness, rutting, deflections, cracking, pothole, bleeding, patching, and shoving. SD for smoothness, rutting, and deflections were inspected using instruments, while cracking, pothole, bleeding, patching, and shoving were surveyed visually. The PSO method was used to quickly calculate the synthetic pavement condition for each pavement section and then obtain the optimal prioritization of pavement sections. With this approach, pavement engineers are able to efficiently perform appropriate and timely M&R activities for pavement sections, according to their priority. This study provides an alternative solution to current approaches for prioritization of pavement sections.


2020 ◽  
pp. 47-56
Author(s):  
M. Ilayaraja ◽  

Mobile adhoc network (MANET) comprises a network of mobile nodes, which communicates with one another through wireless connections. Reliability, energy efficiency, congestion control and interferences are the problems faced with the traditional routing protocols in MANET. Routing defines the process of identifying the optimal paths between two nodes in the network. For resolving these issues, several multipath routing techniques have been presented. This paper assesses the performance of the two bio-inspired multipath routing techniques namely Energy-Aware Multipath Routing Scheme based on particle swarm optimization (EMPSO) and PSO with fitness function (PSO-FF) algorithms. These two algorithms are compared and the results are investigated under several performance measures. The simulation results stated that the PSO-FF algorithm has shown better results over the EMPSO algorithm under several measures.


2020 ◽  
Vol 9 (4) ◽  
pp. 243 ◽  
Author(s):  
Hua Wang ◽  
Wenwen Li ◽  
Wei Huang ◽  
Ke Nie

The delimitation of permanent basic farmland is essentially a multi-objective optimization problem. The traditional demarcation methods cannot simultaneously take into account the requirements of cultivated land quality and the spatial layout of permanent basic farmland, and it cannot balance the relationship between agriculture and urban development. This paper proposed a multi-objective permanent basic farmland delimitation model based on an immune particle swarm optimization algorithm. The general rules for delineating the permanent basic farmland were defined in the model, and the delineation goals and constraints have been formally expressed. The model introduced the immune system concepts to complement the existing theory. This paper describes the coding and initialization methods for the algorithm, particle position and speed update mechanism, and fitness function design. We selected Xun County, Henan Province, as the research area and set up control experiments that aligned with the different targets and compared the performance of the three models of particle swarm optimization (PSO), artificial immune algorithm (AIA), and the improved AIA-PSO in solving multi-objective problems. The experiments proved the feasibility of the model. It avoided the adverse effects of subjective factors and promoted the scientific rationality of the results of permanent basic farmland delineation.


Sensor Review ◽  
2020 ◽  
Vol 40 (5) ◽  
pp. 577-583
Author(s):  
Yanxia Liu ◽  
Zhikai Hu ◽  
JianJun Fang

Purpose The three-axis magnetic sensors are mostly calibrated by scalar method such as ellipsoid fitting and so on, but these methods cannot completely determine the 12 parameters of the error model. A two-stage calibration method based on particle swarm optimization (TSC-PSO) is proposed, which makes full use of the amplitude invariance and direction invariance of Earth’s magnetic field vector. Design/methodology/approach The TSC-PSO designs two-stage fitness function. Stage 1: design a fitness function of the particle swarm by the amplitude invariance of the Earth’s magnetic field to obtain a preliminary error matrix G and the bias error B. Stage 2: further design the fitness function of the particle swarm by the invariance of the Earth’s magnetic field to obtain a rotation matrix R, thereby determining the error matrix uniquely. Findings The proposed TSC-PSO can completely determine 12 unknown parameters in error model and further decrease the maximum fluctuation error of the Earth’s magnetic field amplitude and the absolute error of heading. Practical implications The proposed TSC-PSO provides an effective solution for three-axis magnetic sensor error compensation, which can greatly reduce the price of magnetic sensors and be used in the fields of Earth’s magnetic survey, drilling and Earth’s magnetic integrated navigation. Originality/value The proposed TSC-PSO has significantly improved the magnetic field amplitude and heading accuracy and does not require additional heading reference. In addition, the method is insensitive to noise and initialization conditions, has good robustness and can converge to a global optimum.


Sign in / Sign up

Export Citation Format

Share Document