Tolerance analysis of assemblies with sculptured components in composites materials: comparison between an analytical method and a simulation approach

2018 ◽  
Vol 38 (2) ◽  
pp. 142-157
Author(s):  
Rocco Ascione ◽  
Wilma Polini
2019 ◽  
Author(s):  
Claudio Mancuso ◽  
Domenico Cavaiuolo ◽  
Giuseppe Corbo ◽  
Iakovos Papadimitriou ◽  
Nicolas Brown

Author(s):  
Wilma Polini ◽  
Andrea Corrado ◽  
Costanzo Cavaliere

This work presents a method to support product design, since it shows how to use together tolerance assignment and analysis for choosing among different set of tolerances assigned to the same product. It starts from tolerance assignment that produces different sets of tolerances for the product components which are all acceptable from a functional point of view. It translates each assigned set of tolerances into one or more groups of tolerances that are recognized by the software used for tolerance analysis. Therefore, the software for tolerance analysis is applied to each group of tolerances by means of a Monte Carlo simulation approach. Finally, the obtained results are intersected or compounded to obtain the trend of product functional requirements that allows to identify the best set of tolerances assigned to the product components. The developed method was applied to a skillet, a platform of an industrial plant that is made of five parts connected by screws. The obtained results show how the developed new method is a valid tool to support design for industrial application.


2020 ◽  
Vol 50 (1) ◽  
pp. 155-170 ◽  
Author(s):  
Ewa Dąbrowska

AbstractThe article presents new results concerned with general procedures and algorithms to assess the reliability of complex systems with various reliability structures. The analytical method and based on it the simulation method were used to estimate the reliability characteristics of the port grain transportation system. Finally, the general simulation algorithm was developed to evaluate the reliability characteristics of ageing complex systems. In this case, the systems operating processes were described by any distributions of sojourn times in operation states and the reliability functions of their components were modified in such a way that these components are not characterized by a “lack of memory”. The application of this algorithm has been illustrated by the results for exemplary complex two-state systems.


Author(s):  
John A. Trotter

Hemoglobin is the specific protein of red blood cells. Those cells in which hemoglobin synthesis is initiated are the earliest cells that can presently be considered to be committed to erythropoiesis. In order to identify such early cells electron microscopically, we have made use of the peroxidatic activity of hemoglobin by reacting the marrow of erythropoietically stimulated guinea pigs with diaminobenzidine (DAB). The reaction product appeared as a diffuse and amorphous electron opacity throughout the cytoplasm of reactive cells. The detection of small density increases of such a diffuse nature required an analytical method more sensitive and reliable than the visual examination of micrographs. A procedure was therefore devised for the evaluation of micrographs (negatives) with a densitometer (Weston Photographic Analyzer).


Author(s):  
P. Echlin ◽  
M. McKoon ◽  
E.S. Taylor ◽  
C.E. Thomas ◽  
K.L. Maloney ◽  
...  

Although sections of frozen salt solutions have been used as standards for x-ray microanalysis, such solutions are less useful when analysed in the bulk form. They are poor thermal and electrical conductors and severe phase separation occurs during the cooling process. Following a suggestion by Whitecross et al we have made up a series of salt solutions containing a small amount of graphite to improve the sample conductivity. In addition, we have incorporated a polymer to ensure the formation of microcrystalline ice and a consequent homogenity of salt dispersion within the frozen matrix. The mixtures have been used to standardize the analytical procedures applied to frozen hydrated bulk specimens based on the peak/background analytical method and to measure the absolute concentration of elements in developing roots.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
K Miyagi ◽  
T Fujise ◽  
N Koga ◽  
K Wada ◽  
M Yano ◽  
...  

Author(s):  
Jianqi Li ◽  
Yu Zhou ◽  
Jianying Li

This paper presented a novel analytical method for calculating magnetic field in the slotted air gap of spoke-type permanent-magnet machines using conformal mapping. Firstly, flux density without slots and complex relative air-gap permeance of slotted air gap are derived from conformal transformation separately. Secondly, they are combined in order to obtain normalized flux density taking account into the slots effect. The finite element (FE) results confirmed the validity of the analytical method for predicting magnetic field and back electromotive force (BEMF) in the slotted air gap of spoke-type permanent-magnet machines. In comparison with FE result, the analytical solution yields higher peak value of cogging torque.


Sign in / Sign up

Export Citation Format

Share Document