Investigation on 2-mercaptobenzothiazole behavior as corrosion inhibitor for 316-stainless steel in acidic media

2013 ◽  
Vol 61 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Narges Goudarzi ◽  
Hadi Farahani

Purpose – The purpose of this paper is to describe the behavior of 2-mercaptobenzothiazole (MBT) on the corrosion of 316 stainless steel (SS) in acidic media and the mechanism of its action. Design/methodology/approach – The inhibitive effect of MBT towards the corrosion of 316 SS in acid solution is studied by means of weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy. The effect of inhibitor concentration and temperature against inhibitor action is investigated. Adsorption isotherm and adsorption mechanism are also discussed. Findings – MBT acts as inhibitor for this type of steel in acidic medium. This compound is mixed-type inhibitor and inhibition efficiency increased with increasing inhibitor concentration. MBT retards the rate of both anodic and cathodic corrosion reactions by adsorbing and forming a layer on the steel surface and the adsorption obeys Temkin adsorption isotherms. The inhibition efficiency is temperature dependence in the range from 25 to 65°C and some thermodynamic parameters were calculated and analyzed. Originality/value – The results shown in this paper are an insight to the understanding of the corrosion resistance and electrochemical behavior of 316 SS in the presence of MBT for future industrial applications and development. It is the first time that corrosion inhibition effects of MBT on 316 SS have been evaluated.

2014 ◽  
Vol 43 (3) ◽  
pp. 127-138 ◽  
Author(s):  
Aida Zaabar ◽  
Razika Aitout ◽  
Laid Makhloufi ◽  
Kamel Belhamel ◽  
Boualem Saidani

Purpose – The aim of this research was to investigate the use of aqueous extracts of nettle plant (NE) as a green corrosion inhibitor of mild steel in hydrochloric acid solution. Design/methodology/approach – The inhibition efficiency was investigated by weight loss measurements, potentiodynamic polarizations, electrochemical impedance spectroscopy, SEM observations and EDX analysis. Findings – The inhibition efficiency increased with an increase in concentration of NE up to a critical concentration of 1.5×10−3 g · cm−3 where the highest inhibition efficiency of 97 percent was obtained. The adsorption of the inhibitor was spontaneous (reflected by the negative value of ΔGads0), supported the mechanism of physical adsorption and obeyed to the Langmuir adsorption isotherm. The inhibition action of the extracts was independent on the storage time; it could be conserved without any specific conditions of time and temperature. Research limitations/implications – The anticorrosion effect can be better understood when the active compound in the extracts is identified and what is the inhibition efficiency of one component in the presence of another in the mixture (synergetic or antagonist effects). Practical implications – Nettle is a healthy plant, without particular toxicity that can find possible applications as environmentally friendly inhibitor of mild steel used as materials in food industry. Originality/value – Aqueous nettle extracts were studied for the first time as corrosion inhibitor and its anticorrosion effect was proven by standard methods.


2020 ◽  
Vol 39 (1) ◽  
pp. 340-350
Author(s):  
Mingjing Wang ◽  
Song Zeng ◽  
Huihui Zhang ◽  
Ming Zhu ◽  
Chengxin Lei ◽  
...  

AbstractCorrosion behaviors of 316 stainless steel (316 ss) and Inconel 625 alloy in molten NaCl–KCl–ZnCl2 at 700°C and 900°C were investigated by immersion tests and electrochemical methods, including potentiodynamic polarization and electrochemical impedance spectroscopy. X-ray diffraction and scanning electron microscopy/energy dispersive spectroscopy were used to analyze the phases and microstructures of the corrosion products. Inconel 625 alloy and 316 ss exhibited high corrosion rates in molten chlorides, and the corrosion rates of these two alloys accelerated when the temperature increased from 700°C to 900°C. The results of the electrochemical tests showed that both alloys exhibited active corrosion in chloride molten salt, and the current density of 316 ss in chloride molten salt at 700°C was 2.756 mA/cm−2, which is about three times the value for Inconel 625 alloy; and the values of the charge transfer resistance (Rt) for Inconel 625 were larger than those for 316 ss. The corrosion of these two alloys is owing to the preferred oxidation of Cr in chloride molten salt, and the corrosion layer was mainly ZnCr2O4 which was loose and porous and showed poor adherence to metal.


2019 ◽  
Vol 66 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Walid Belmaghraoui ◽  
Aimad Mazkour ◽  
Hicham Harhar ◽  
Mourad Harir ◽  
Souad El Hajjaji

Purpose This study aims to investigate the corrosion inhibition effect of extracted oil from Ziziphus lotus fruit on corrosion of C38 carbon steel in 5.5 M H3PO4 solution using potentiodynamic polarization and impedance techniques. Design/methodology/approach Oil composition was determined using gas chromatography, and the results showed that oleic and palmitic acids present approximately 84.0 per cent of its total chemical content. Electrochemical impedance spectroscopy (EIS) data were analyzed by adapting it to a well-developed electric circuit model. The inhibition efficiency of Z. lotus oil was calculated and compared using Tafel polarization and EIS. Findings Accordingly, the oil extract was found to act as an anodic type inhibitor. Furthermore, inhibition efficiency of Z. lotus oil extract increase with oil concentrations and achieve approximately 70.5 per cent at 3 g/L solution of Z. lotus oil. Originality/value The results obtained from different tested methods were in line, and the oil was able to reduce significantly the kinetics of the corrosion process of C38 carbon steel.


2014 ◽  
Vol 61 (5) ◽  
pp. 300-306 ◽  
Author(s):  
B.P. Markhali ◽  
R. Naderi ◽  
M. Sayebani ◽  
M. Mahdavian

Purpose – The purpose of this paper is investigate the inhibition efficiency of three similar bi-cyclic organic compounds, namely, benzimidazole (BI), benzotriazole (BTAH) and benzothiazole (BTH) on carbon steel in 1 M hydrochloric acid (HCl) solution. Organic inhibitors are widely used to protect metals in acidic media. Among abundant suggestions for acid corrosion inhibitors, azole compounds have gained attention. Design/methodology/approach – The inhibition efficiency of the three organic compounds was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Findings – Superiorities of BTH and BTAH corrosion inhibitors were shown by EIS data and polarization curves. Moreover, the results revealed that BTAH and BTH can function as effective mixed-type adsorptive inhibitors, whereas no inhibition behavior was observed for BI. Both BTAH and BTH obeyed Longmuir adsorption isotherm. The results obtained from this isotherm showed that both inhibitors adsorbed on the specimen surface physically and chemically. The difference in inhibition efficiencies of BTAH, BTH and BI was related to the presence of nitrogen and sulfur hetero atoms on their molecular structures. Originality/value – This study evaluated inhibition efficiency of BI, BTAH and BTH using electrochemical methods. In addition, the study attempted to find inhibition mechanism of the inhibitors and to find modes of adsorption of the inhibitors, correlating effects of heteroatoms and inhibition efficiency.


2015 ◽  
Vol 44 (6) ◽  
pp. 371-378 ◽  
Author(s):  
Y. Sangeetha ◽  
S. Meenakshi ◽  
C. Sairam Sundaram

Purpose – The purpose of this paper is to develop an eco-friendly corrosion inhibitor for mild steel in 1 M HCl. Design/methodology/approach – A pharmaceutical drug acetyl G was investigated for its corrosion inhibition efficiency using weight loss method, potentiodynamic polarisation and electrochemical impedance spectroscopy. Findings – The inhibition efficiency increased with increase in inhibitor concentration. Results from polarisation studies revealed mixed type of inhibition. Impedance studies, scanning electron microscopy and Fourier transform spectroscopy confirm the adsorption of inhibitor on the mild steel surface. Research limitations/implications – The drug acetyl G has sulphur and nitrogen atoms which effectively block the corrosion of mild steel and is non-toxic and has good inhibition efficiency. Practical implications – This method provides an excellent, non-toxic and cost-effective material as a corrosion inhibitor for mild steel in acid medium. Originality/value – Application of this drug as a corrosion inhibitor has not been reported yet in the literature. Replacing the organic inhibitors, this green inhibitor shows excellent inhibition efficiency. This is adsorbed excellently on the mild steel surface due to the presence of long chain and hetero atoms. Thus, the drug retards the corrosion reaction.


2019 ◽  
Vol 66 (6) ◽  
pp. 835-852 ◽  
Author(s):  
Aziz Boutouil ◽  
My Rachid Laamari ◽  
Ilham Elazhary ◽  
Hafid Anane ◽  
Abdeslem Ben Tama ◽  
...  

Purpose This study aims to investigate the inhibition effect of a newly synthesized1,2,3-triazole containing a carbohydrate and imidazole substituents, namely, 1-((1-((2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4′,5′-d]pyran-5-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl)-1H-benzo[d]imidazole (TTB) on the corrosion of mild steel in aerated 1 M H2SO4. Design/methodology/approach The authors have used weight loss measurement, potentiodynamic polarization, electrochemical impedance spectroscopy, FT-IR studies, scanning electron microscopy analysis and energy dispersive X-ray (EDX) spectroscopy techniques. Findings It is found that, in the working range of 298-328 K, the inhibition efficiency of TTB increases with increasing concentration to attain the highest value (92 per cent) at 2.5 × 10−3 M. Both chemisorption and physisorption of TTB take place on the mild steel, resulting in the formation of an inhibiting film. Computational methods point to the imidazole and phenyl ring as the main structural parts responsible of adsorption by electron-donating to the steel surface, while the triazol ring is responsible for the electron accepting. Such strong donating–accepting interactions lead to higher inhibition efficiency of TTB in the aqueous working system. Originality/value This work is original with the aim of finding new acid corrosion inhibitors.


2019 ◽  
Vol 66 (3) ◽  
pp. 360-368 ◽  
Author(s):  
Abou-Elhagag A. Hermas ◽  
Abobakr Mohamed Elnady ◽  
Reham M. Ali

Purpose Although stainless steel (SS) has good corrosion resistance in most aqueous solutions, it suffers corrosion in some solutions which contain aggressive ions such as sulfide ions. This study aims to use some cephalosporins (cefotaxime, cephapirin and cefazolin) as corrosion inhibitors of commercial SS in 0.5 M H2SO4 solution containing sulfide ions at 30°C. Design/methodology/approach The study was carried out using weight loss method, potential-time, linear polarization, potentiodynamic polarization, electrochemical impedance measurements, scanning electron microscopy, Fourier transform infrared and energy dispersive X-ray analysis. Findings The presence of the cephalosporin compound in the corrosive medium shifted the corrosion potential of SS to much positive side, which enhances self-passivation of SS, and the shifting increased with increasing inhibitor concentration. The cephalosporin compounds worked as effective inhibitors with mainly anodic and the efficiency increase as cefotaxime < cephapirin < cefazolin. The inhibitors form a protective adsorbed layer, which enriches the surface content of Ni and Cr and thus assists the SS to be passive. Originality/value The antibiotics cephalosporins could be used as effective corrosion inhibitors for SS in acidic solutions containing sulfide ions. The inhibitors enhances the the passive oxide film of SS even in presence of aggressive ions such as sulfide ions.


2014 ◽  
Vol 61 (4) ◽  
pp. 255-260 ◽  
Author(s):  
Xie Xuejun* ◽  
Xiao Peng* ◽  
He Jie ◽  
Xiao Wen ◽  
Fu Qiang ◽  
...  

Purpose – To study the inhibition effect and mechanism of the Momordica charantia extract (BM) to 20 A carbon steel in 5 per cent HCl. Design/methodology/approach – The weight loss, polarization curve, infrared spectrum (IR) analysis and X-ray photoelectron spectrum (XPS) analysis were carefully investigated to indicate the inhibition effect and mechanism of the BM to 20 A carbon steel in 5 per cent HCl. Findings – BM was composed of C, N and O. Functional groups such as N–H and C=O were found in BM. The inhibition efficiency increased with the increasing concentration of BM. BM behaved as a mixed-type inhibitor, and the inhibition of BM to 20 A carbon steel might be its adsorption through the coordinate covalent bonding among the lone pair electrons of N and O and the empty 3d orbits of Fe, and the adsorption on the surface of 20 A carbon steel obeyed the Langmuir isotherm equation. Research limitations/implications – The inhibition of the BM to 20 A carbon steel in 5 per cent HCl. Practical implications – BM could be used in 5 per cent HCl to prevent 20 A carbon steel from corrosion. Social implications – BM could be used in the chemical cleaning of the boilers to prevent the thermal equipments from corrosion. Originality/value – The inhibition effect and mechanism of the BM to 20 A carbon steel were studied by the weight loss, polarization curve, IR analysis and XPS analysis. BM was composed of C, N and O. Functional groups such as N–H and C=O were found in BM. BM behaved as a mixed-type inhibitor. The inhibition efficiency increased with the increasing concentration of BM, and the adsorption on the surface of 20 A carbon steel obeyed the Langmuir isotherm equation.


2020 ◽  
Vol 67 (5) ◽  
pp. 491-499
Author(s):  
Abou-Elhagag A. Hermas ◽  
Mostafa H. Wahdan ◽  
Eatemad M. Ahmed

Purpose This work aims to prepare and characterize of protective anticorrosion phosphate-doped polyaniline (PANI) nanocomposite coatings for stainless steel (SS) in chloride solution. Design/methodology/approach PANI composite coatings were electrodeposited from aqueous sulfuric acid solution containing monomer and Al2O3 nanoparticles using cyclic voltammetry technique. Doping by phosphate was done by aging the coated steels for different periods (1–168 h) in phosphate solution. The polymer film composite was investigated by Fourier-transform infrared spectroscopy and scanning electron microscopy techniques. Potential-time, anodic polarization and electrochemical impedance spectroscopy were used to study the protection efficiency of the coatings. Findings The Al2O3 nanoparticles were incorporated into the deposited PANI layer but they decreased the deposition of polymer. The nanoparticles and the phosphate anions enhanced the protective PANI layer for passivation and protection of SS in the chloride solution. Originality/value The replacement of counter anions by phosphate ions improved significantly the PANI and its nanocomposite as protective coating of SS in chloride solution.


2016 ◽  
Vol 63 (6) ◽  
pp. 470-476 ◽  
Author(s):  
Pawin Wongkhamprai ◽  
Manthana Jariyaboon

Purpose The aim of this work was to investigate how Andrographis paniculata (Burm.f.) Wall.ex Nees extract affected the corrosion of low-carbon (C) steel in 0.1M HCl. Design/methodology/approach The Andrographis paniculata (Burm.f.) Wall.ex Nees was extracted into distilled water at 70°C for 1 h. The corrosion inhibition efficiency of the extract was determined in 0.1M HCl using weight loss measurements, potentiodynamic polarization and electrochemical impedance spectroscopy. The effects of extract concentrations and of temperature were investigated. Findings The Andrographis paniculata (Burm.f.) Wall.ex Nees extract could inhibit the corrosion process of low-C steel in 0.1M HCl. With the extract concentration of 1 g/l, an inhibition efficiency of 96.3 per cent was obtained. The extract acted as an anodic inhibitor. The adsorption process of the extract was physisorption and it followed the Langmuir adsorption isotherm. Originality/value This paper revealed that Andrographis paniculata (Burm.f.) Wall.ex Nees cultivated in Thailand, which was extracted using a simple and environmentally friendly method, could act as a very good green corrosion inhibitor for low-C steel in 0.1M HCl solution.


Sign in / Sign up

Export Citation Format

Share Document