In situ study on the influence of bicarbonate, chloride and outer electrode potential on crevice corrosion occurrence and development of X70 steel

2019 ◽  
Vol 66 (5) ◽  
pp. 651-660 ◽  
Author(s):  
Qian Hu ◽  
Saiwen Lu ◽  
Jing Liu ◽  
Feng Huang

Purpose The purpose of this paper is to clarify the influence of bicarbonate, chloride and outer electrode potential on crevice corrosion occurrence and development of X70 steel. Design/methodology/approach The crevice corrosion behavior in NaHCO3 and NaCl solutions was investigated through modeling and experiments. The electrode potential and current density distribution were simulated, and the acidification of crevice solution was monitored in situ. Findings The bicarbonate concentration and outer electrode potential remarkably influenced the occurrence of crevice corrosion. The former changes the passivation curves, and the latter alters the initial potential. Moreover, chloride concentration exerted minimal influence. The location of acidification and pitting occurrences depended on the potential difference between the outer electrode and electrode at the active dissolution current peak. Originality/value This study provides a better understanding of the crevice corrosion behavior and mechanism under natural conditions.

2014 ◽  
Vol 61 (5) ◽  
pp. 319-327 ◽  
Author(s):  
Mohamed Gobara ◽  
Mohamed Shamekh

Purpose – This paper aims to study both the mechanical properties and the corrosion behavior of the synthesized in situ (TiC-TiB2) particulates/AZ91 magnesium matrix composite and compare the results with that of the conventional AZ91D alloy. Design/methodology/approach – Scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) were used to study the surface morphology and crystalline structure. Mechanical compression tests were used to investigate the mechanical performance according to ASTM E9-89a. The corrosion behavior of the synthesized magnesium alloy was examined using both electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques in dilute Harrison solutions. Findings – The microstructure of the Mg composite showed a uniform distribution of reinforcing phases. Also, the reinforcing phases were formed without residual intermediate phases. The addition of titanium and boron carbides not only enhanced the mechanical properties of the matrix but also improve its corrosion behavior. Originality/value – This is the first time that magnesium matrix composite has been to synthesized with TiC and TiB2 particulates starting from starting from Ti and B carbides powder without adding aluminium using practical and low-cost technique (in situ reactive infiltration technique). This paper studies the corrosion behavior of synthesized Mg matrix in dilute Harrison solution and compares the results with that of conventional AZ91D.


2014 ◽  
Vol 61 (3) ◽  
pp. 146-152 ◽  
Author(s):  
Ali Ehsani ◽  
Mohammad Ghasem Mahjani ◽  
Maryam Nasseri ◽  
Majid Jafarian

Purpose – The purpose of this paper was to investigate the anti-corrosion behavior of polypyrrole (PPy) films in different states and presence of alumina nanoparticles synthesized by galvanostatic electropolymerization on stainless steel (SS) electrodes in an artificial seawater solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Design/methodology/approach – The electrochemical measurements were used to examine the effects of PPy and its nanocomposite on the corrosion behavior of SS type 316L in artificial seawater. A standard electrochemical cell with three electrodes was used for the measurements. The electrochemical response of the coated electrodes in the doped and the undoped state was compared with that of a bare electrode. Corrosion rate information was obtained by the Tafel extrapolation method, where the intersection point of a cathodic and an anodic polarization curve provides both the corrosion potential and the corrosion current. EIS measurements confirmed the potentiodynamic and open circuit potential (OCP) results. The microstructure of the obtained films was investigated by scanning electron microscopy. Findings – The results showed that the coated polymer films shifted the electrode potential toward more positive potentials, but this shift did not lead to passivation. However, a notable synergy was observed between PPy undoped film, oxygen reduction and iron dissolution. The potential of the SS remained in the active dissolution region, and it was not possible to produce a passive oxide layer in this region. PPy separates the metal dissolution process from the oxygen reduction process. This would prevent the local pH increase at the metal surface and subsequent delamination. The polarization curves, EOCP and impedance measurements showed that PPy undoped/Al2O3 layers show promise as good candidates for the corrosion protection of reactive metals. Originality/value – This paper presents that electrodes coated with undoped PPy synthesized in the presence of dodecyl sulfate anions and Al2O3 nanoparticles offered a noticeable enhancement of protection against corrosion processes.


2018 ◽  
Vol 65 (6) ◽  
pp. 538-546
Author(s):  
De Ding ◽  
Yue Zhang ◽  
Xiaobing Yu ◽  
Benling Fang ◽  
Jipu Guo ◽  
...  

Purpose High-silicon cast iron has excellent corrosion resistance in some specific medium. But the effects of pH value, chloride concentration and soil moisture content on corrosion behavior are still unknown. This study aims to provide reference for the application of high-silicon cast iron in different environments. Design/methodology/approach Electrochemical impedance spectroscopy and potentiodynamic polarization curves were used to investigate the corrosion mechanism and rate. The morphology was observed by scanning electron microscopy. The chemical compositions of the corrosion products were detected by energy-dispersive spectroscopy and X-ray diffraction. Findings When the solution is acidic, the corrosion of high-silicon cast iron is more serious. When the chloride concentration is 0.1 per cent, the corrosion rate of high-silicon cast iron is the largest. A passive film is formed on the surface to prevent the corrosion reaction with the increasing of chloride concentration. The corrosion rate is the largest when water content is 15 per cent, and the corrosion is the lightest when water content is 30 per cent. Originality/value This study provides support for the selection of high-silicon cast iron as grounded material.


CORROSION ◽  
2000 ◽  
Vol 56 (4) ◽  
pp. 411-418 ◽  
Author(s):  
A. Pardo ◽  
E. Otero ◽  
M. C. Merino ◽  
M. D. López ◽  
M. V. Utrilla ◽  
...  

2013 ◽  
Vol 58 (1) ◽  
pp. 1565-1587 ◽  
Author(s):  
G. Hinds
Keyword(s):  

2021 ◽  
Author(s):  
Dalton J. Leprich ◽  
Beverly E. Flood ◽  
Peter R. Schroedl ◽  
Elizabeth Ricci ◽  
Jeffery J. Marlow ◽  
...  

AbstractCarbonate rocks at marine methane seeps are commonly colonized by sulfur-oxidizing bacteria that co-occur with etch pits that suggest active dissolution. We show that sulfur-oxidizing bacteria are abundant on the surface of an exemplar seep carbonate collected from Del Mar East Methane Seep Field, USA. We then used bioreactors containing aragonite mineral coupons that simulate certain seep conditions to investigate plausible in situ rates of carbonate dissolution associated with sulfur-oxidizing bacteria. Bioreactors inoculated with a sulfur-oxidizing bacterial strain, Celeribacter baekdonensis LH4, growing on aragonite coupons induced dissolution rates in sulfidic, heterotrophic, and abiotic conditions of 1773.97 (±324.35), 152.81 (±123.27), and 272.99 (±249.96) μmol CaCO3 • cm−2 • yr−1, respectively. Steep gradients in pH were also measured within carbonate-attached biofilms using pH-sensitive fluorophores. Together, these results show that the production of acidic microenvironments in biofilms of sulfur-oxidizing bacteria are capable of dissolving carbonate rocks, even under well-buffered marine conditions. Our results support the hypothesis that authigenic carbonate rock dissolution driven by lithotrophic sulfur-oxidation constitutes a previously unknown carbon flux from the rock reservoir to the ocean and atmosphere.


1998 ◽  
Vol 88 (6) ◽  
pp. 1111-1115 ◽  
Author(s):  
Kalman Kovacs ◽  
Eva Horvath ◽  
Lucia Stefaneanu ◽  
Juan Bilbao ◽  
William Singer ◽  
...  

✓ The authors report on the morphological features of a pituitary adenoma that produced growth hormone (GH) and adrenocorticotropic hormone (ACTH). This hormone combination produced by a single adenoma is extremely rare; a review of the available literature showed that only one previous case has been published. The tumor, which was removed from a 62-year-old man with acromegaly, was studied by histological and immunocytochemical analyses, transmission electron microscopy, immunoelectron microscopy, and in situ hybridization. When the authors used light microscopy, the tumor appeared to be a bimorphous mixed pituitary adenoma composed of two separate cell types: one cell population synthesized GH and the other ACTH. The cytogenesis of pituitary adenomas that produce more than one hormone is obscure. It may be that two separate cells—one somatotroph and one corticotroph—transformed into neoplastic cells, or that the adenoma arose in a common stem cell that differentiated into two separate cell types. In this case immunoelectron microscopy conclusively demonstrated ACTH in the secretory granules of several somatotrophs. This was associated with a change in the morphological characteristics of secretory granules. Thus it is possible that the tumor was originally a somatotropic adenoma that began to produce ACTH as a result of mutations that occurred during tumor progression.


2014 ◽  
Vol 81 (3) ◽  
pp. 1024-1031 ◽  
Author(s):  
Bhagyalakshmi Kalidass ◽  
Muhammad Farhan Ul-Haque ◽  
Bipin S. Baral ◽  
Alan A. DiSpirito ◽  
Jeremy D. Semrau

ABSTRACTIt is well known that copper is a key factor regulating expression of the two forms of methane monooxygenase found in proteobacterial methanotrophs. Of these forms, the cytoplasmic, or soluble, methane monooxygenase (sMMO) is expressed only at low copper concentrations. The membrane-bound, or particulate, methane monooxygenase (pMMO) is constitutively expressed with respect to copper, and such expression increases with increasing copper. Recent findings have shown that copper uptake is mediated by a modified polypeptide, or chalkophore, termed methanobactin. Although methanobactin has high specificity for copper, it can bind other metals, e.g., gold. Here we show that inMethylosinus trichosporiumOB3b, sMMO is expressed and active in the presence of copper if gold is also simultaneously present. Such expression appears to be due to gold binding to methanobactin produced byM. trichosporiumOB3b, thereby limiting copper uptake. Such expression and activity, however, was significantly reduced if methanobactin preloaded with copper was also added. Further, quantitative reverse transcriptase PCR (RT-qPCR) of transcripts of genes encoding polypeptides of both forms of MMO and SDS-PAGE results indicate that both sMMO and pMMO can be expressed when copper and gold are present, as gold effectively competes with copper for binding to methanobactin. Such findings suggest that under certain geochemical conditions, both forms of MMO may be expressed and activein situ. Finally, these findings also suggest strategies whereby field sites can be manipulated to enhance sMMO expression, i.e., through the addition of a metal that can compete with copper for binding to methanobactin.


2012 ◽  
Vol 78 (20) ◽  
pp. 7467-7475 ◽  
Author(s):  
Amy Apprill ◽  
Heather Q. Marlow ◽  
Mark Q. Martindale ◽  
Michael S. Rappé

ABSTRACTRelationships between corals and specific bacterial associates are thought to play an important role in coral health. In this study, the specificity of bacteria associating with the coralPocillopora meandrinawas investigated by exposing coral embryos to various strains of cultured marine bacteria, sterile seawater, or raw seawater and examining the identity, density, and location of incorporated cells. The isolates utilized in this experiment included members of the Roseobacter and SAR11 clades of theAlphaproteobacteria, aPseudoalteromonasspecies of theGammaproteobacteria, and aSynechococcusspecies of theCyanobacteriaphylum. Based on terminal restriction fragment length polymorphism analysis of small-subunit rRNA genes, similarities in bacterial communities associated with 170-h-old planulae were observed regardless of treatment, suggesting that bacteria may have been externally associated from the outset of the experiment. Microscopic examination ofP. meandrinaplanulae by fluorescencein situhybridization with bacterial and Roseobacter clade-specific oligonucleotide probes revealed differences in the densities and locations of planulae-associated cells. Planulae exposed to either raw seawater or strains ofPseudoalteromonasand Roseobacter harbored the highest densities of internally associated cells, of which 20 to 100% belonged to the Roseobacter clade. Planulae exposed to sterile seawater or strains of the SAR11 clade andSynechococcusdid not show evidence of prominent bacterial associations. Additional analysis of the raw-seawater-exposed planulae via electron microscopy confirmed the presence of internally associated prokaryotic cells, as well as virus-like particles. These results suggest that the availability of specific microorganisms may be an important factor in the establishment of coral-bacterial relationships.


2010 ◽  
Vol 1 (4) ◽  
pp. 344-357 ◽  
Author(s):  
V. Richter‐Trummer ◽  
P.M.G.P. Moreira ◽  
S.D. Pastrama ◽  
M.A.P. Vaz ◽  
P.M.S.T. de Castro

PurposeThe purpose of this paper is to develop a methodology for in situ stress intensity factor (SIF) determination that can be used for the analysis of cracked structures. The technique is based on digital image correlation (DIC) combined with an overdetermined algorithm.Design/methodology/approachThe linear overdeterministic algorithm for calculating the SIF based on stress values around the crack tip is applied to a strain field obtained by DIC.FindingsAs long as the image quality is sufficiently high, a good accuracy can be obtained for the measured SIF. The crack tip can be automatically detected based on the same strain field. The use of the strain field instead of the displacement field, eliminates problems related to the rigid body motion of the analysed structure.Practical implicationsIn future works, based on the applied techniques, the SIF of complex cracked plane stress structures can be accurately determined in real engineering applications.Originality/valueThe paper demonstrates application of known techniques, refined for other applications, also the use of stress field for SIF overdeterministic calculations.


Sign in / Sign up

Export Citation Format

Share Document