Implementation of a new inlet protection system into HEMS fleet

2020 ◽  
Vol 92 (1) ◽  
pp. 67-79
Author(s):  
Bartosz Stanisław Przybyła ◽  
Radoslaw Przysowa ◽  
Zbigniew Zapałowicz

Purpose EC-135P2+ helicopters operated by Polish Medical Air Rescue are highly exposed to environmental particles entering engines when performing helicopter emergency medical services. This paper aims to assess the effectiveness of inlet barrier filters installed to protect the engines, including their impact on maintenance. Design/methodology/approach The organisation adopted a comprehensive set of measures to predict and limit the impact of dust ingestion including visual inspections, health management and engine trend monitoring based on ground power checks’ (GPC) results. Three alternative particle separation solutions were considered. Finally, helicopter inlets were modified to allow the selected filter system to be installed, which reduced the number of particles ingested by the engine and prevented from premature overhauls. Findings The analyses carried out enabled not only the selection of the optimal filtration solution and its seamless implementation into the fleet but also confirmed its efficiency. After installing the filters, engines’ lifetime is extended from 500 to 4,500 flight hours while operating costs and the number of maintenance tasks was reduced significantly. Originality/value Lessons learned from operational experience show that a well-matched particle separation system can mitigate accelerated engine deterioration even if the platform is continuously exposed to environmental particles. The remaining useful life of engines can be predicted using performance models and data from GPC.

Author(s):  
Pradeep Lall ◽  
Hao Zhang ◽  
Lynn Davis

The reliability consideration of LED products includes both luminous flux drop and color shift. Previous research either talks about luminous maintenance or color shift, because luminous flux degradation usually takes very long time to observe. In this paper, the impact of a VOC (volatile organic compound) contaminated luminous flux and color stability are examined. As a result, both luminous degradation and color shift had been recorded in a short time. Test samples are white, phosphor-converted, high-power LED packages. Absolute radiant flux is measured with integrating sphere system to calculate the luminous flux. Luminous flux degradation and color shift distance were plotted versus aging time to show the degradation pattern. A prognostic health management (PHM) method based on the state variables and state estimator have been proposed in this paper. In this PHM framework, unscented kalman filter (UKF) was deployed as the carrier of all states. During the estimation process, third order dynamic transfer function was used to implement the PHM framework. Both of the luminous flux and color shift distance have been used as the state variable with the same PHM framework to exam the robustness of the method. Predicted remaining useful life is calculated at every measurement point to compare with the tested remaining useful life. The result shows that state estimator can be used as the method for the PHM of LED degradation with respect to both luminous flux and color shift distance. The prediction of remaining useful life of LED package, made by the states estimator and data driven approach, falls in the acceptable error-bounds (20%) after a short training of the estimator.


2018 ◽  
Vol 24 (4) ◽  
pp. 422-436 ◽  
Author(s):  
Zengqiang Jiang ◽  
Dragan Banjevic ◽  
Mingcheng E. ◽  
Andrew Jardine ◽  
Qi Li

Purpose The purpose of this paper is to develop an approach for estimating the remaining useful life (RUL) of metropolitan train wheels considering measurement error. Design/methodology/approach The paper proposes a wear model of a metropolitan train wheel based on a discrete state space model; the model considers the wheel’s stochastic degradation and measurement error simultaneously. The paper estimates the RUL on the basis of the estimated degradation state. Finally, it presents a case study to verify the proposed approach. The results indicate that the proposed method is superior to methods that do not consider measurement error and can improve the accuracy of the estimated RUL. Findings RUL estimation is a key issue in condition-based maintenance and prognostics and health management. With the rapid development of advanced sensor technologies and data acquisition facilities for the maintenance of metropolitan train wheels, condition monitoring (CM) is becoming more accurate and more affordable, creating the possibility of estimating the RUL of wheels using CM data. However, the measurements of the wheels, especially the wayside measurements, are not yet precise enough. On the other hand, few existing studies of the RUL estimation of train wheels consider measurement error. Practical implications The approach described in this paper will make the RUL estimation of metropolitan train wheels easier and more precise. Originality/value Hundreds of million yuan are wasted every year due to over re-profiling of rail wheels in China. The ability to precisely estimate RUL will reduce the number of re-profiling activities and achieve significant economic benefits. More generally, the paper could enrich the body of knowledge of RUL estimation for a slowly degrading system considering measurement error.


2017 ◽  
Vol 8 (4) ◽  
pp. 484-495 ◽  
Author(s):  
Adrian Cubillo ◽  
Jeroen Vermeulen ◽  
Marcos Rodriguez de la Peña ◽  
Ignacio Collantes Casanova ◽  
Suresh Perinpanayagam

Purpose Integrated vehicle health management has been developed for several years in different industries, to be able to provide the required inputs to determine the optimal maintenance operations depending on the actual health status of the system. The purpose of this paper is to demonstrate the potential of a physics-based model (PbM) for prognostics with a real case study, based on the detection of incipient faults and estimate the remaining useful life of a planetary transmission of an aircraft system. Design/methodology/approach Most of the research in the area of health assessment algorithms has been focused on data-driven approaches that are not based on the knowledge of the physics of the system, while PbM approaches rely on the understanding of the system and the degradation mechanisms. A physics-based modelling approach to represent metal-metal contact and fatigue in the gears of the planetary transmission of an aircraft system is applied. Findings Both the failure mode caused by metal-metal contact as caused by fatigue in the gears is described. Furthermore, the real-time application that retrieves the results from the simulations to assess the health of the system is described. Finally the decision making that can be executed during flight in the aircraft is incorporated. Originality/value The paper proposes an innovative prognostics health management system that assesses two important failure modes of the planetary transmission that regulates the speed of the generators of an aircraft. The results from the models have been integrated in an application that emulates a real system in the aircraft and computes the remaining useful life in real time.


Author(s):  
Robert M. Vandawaker ◽  
David R. Jacques ◽  
Jason K. Freels

Across many industries, systems are exceeding their intended design lives, whether they are ships, bridges or military aircraft. As a result failure rates can increase and unanticipated wear or failure conditions can arise. Health monitoring research and application has the potential to more safely lengthen the service life of a range of systems through utilization of sensor data and knowledge of failure mechanisms to predict component life remaining. A further benefit of health monitoring when combined across an entire platform is system health management. System health management is an enabler of condition based maintenance, which allows repair or replacement based on material condition, not a set time. Replacement of components based on condition can enable cost savings through fewer parts being used and the associated maintenance costs. The goal of this research is to show the management of system health can provide savings in maintenance and logistics cost while increasing vehicle availability through the approach of condition based maintenance.This work examines the impact of prediction accuracy uncertainty in remaining useful life prognostics for a squadron of 12 aircraft. The uncertainty in this research is introduced in the system through an uncertainty factor applied to the useful life prediction. An ARENA discrete event simulation is utilized to explore the effect of prediction error on availability, reliability, and maintenance and logistics processes. Aircraft are processed through preflight, flight, and post-flight operations, as well as maintenance and logistics activities. A baseline case with traditional time driven maintenance is performed for comparison to the condition based maintenance approach of this research.This research does not consider cost or decision making processes, instead focusing on utilization parameters of both aircraft and manpower. The occurrence and impact of false alarms on system performance is examined. The results show the potential availability, reliability, and maintenance benefits of a health monitoring system and explore the diagnostic uncertainty.


Author(s):  
Junchuan Shi ◽  
Tianyu Yu ◽  
Kai Goebel ◽  
Dazhong Wu

Abstract Prognostics and health management (PHM) of bearings is crucial for reducing the risk of failure and the cost of maintenance for rotating machinery. Model-based prognostic methods develop closed-form mathematical models based on underlying physics. However, the physics of complex bearing failures under varying operating conditions is not well understood yet. To complement model-based prognostics, data-driven methods have been increasingly used to predict the remaining useful life (RUL) of bearings. As opposed to other machine learning methods, ensemble learning methods can achieve higher prediction accuracy by combining multiple learning algorithms of different types. The rationale behind ensemble learning is that higher performance can be achieved by combining base learners that overestimate and underestimate the RUL of bearings. However, building an effective ensemble remains a challenge. To address this issue, the impact of diversity in base learners and extracted features in different degradation stages on the performance of ensemble learning is investigated. The degradation process of bearings is classified into three stages, including normal wear, smooth wear, and severe wear, based on the root-mean-square (RMS) of vibration signals. To evaluate the impact of diversity on prediction performance, vibration data collected from rolling element bearings was used to train predictive models. Experimental results have shown that the performance of the proposed ensemble learning method is significantly improved by selecting diverse features and base learners in different degradation stages.


2020 ◽  
Vol 14 ◽  
Author(s):  
Dangbo Du ◽  
Jianxun Zhang ◽  
Xiaosheng Si ◽  
Changhua Hu

Background: Remaining useful life (RUL) estimation is the central mission to the complex systems’ prognostics and health management. During last decades, numbers of developments and applications of the RUL estimation have proliferated. Objective: As one of the most popular approaches, stochastic process-based approach has been widely used for characterizing the degradation trajectories and estimating RULs. This paper aimed at reviewing the latest methods and patents on this topic. Methods: The review is concentrated on four common stochastic processes for degradation modelling and RUL estimation, i.e., Gamma process, Wiener process, inverse Gaussian process and Markov chain. Results: After a briefly review of these four models, we pointed out the pros and cons of them, as well as the improvement direction of each method. Conclusion: For better implementation, the applications of these four approaches on maintenance and decision-making are systematically introduced. Finally, the possible future trends are concluded tentatively.


2015 ◽  
Vol 16 (1) ◽  
pp. 50-70 ◽  
Author(s):  
Jakob Cakarnis ◽  
Steve Peter D'Alessandro

Purpose – This paper investigates the determinants of credit card use and misuse by student and young professionals. Critical to the research is the impact of materialism and knowledge on selection of the appropriate credit card. Design/methodology/approach – This study uses survey research and partial least squares to investigate credit card behaviors of students versus young professionals. Findings – In a comparative study of young professionals and students, it was found that consumer knowledge, as expected, leads to better consumer selection of credit cards. Materialism was also found to increase the motivation for more optimal consumer outcomes. For more experienced consumers, such as young professionals, it was found that despite them being more knowledgeable, they were more likely to select a credit card based on impulse. Originality/value – This paper examines how materialism may in fact encourage some consumers to make better decisions because they are more motivated to develop better knowledge. It also shows how better credit card selection may inhibit impulse purchasing.


2021 ◽  
Author(s):  
Mohammad Rubyet Islam ◽  
Peter Sandborn

Abstract Prognostics and Health Management (PHM) is an engineering discipline focused on predicting the point at which systems or components will no longer perform as intended. The prediction is often articulated as a Remaining Useful Life (RUL). RUL is an important decision-making tool for contingency mitigation, i.e., the prediction of an RUL (and its associated confidence) enables decisions to be made about how and when to maintain the system. PHM is generally applied to hardware systems in the electronics and non-electronics application domains. The application of PHM (and RUL) concepts has not been explored for application to software. Today, software (SW) health management is confined to diagnostic assessments that identify problems, whereas prognostic assessment potentially indicates when in the future a problem will become detrimental to the operation of the system. Relevant areas such as SW defect prediction, SW reliability prediction, predictive maintenance of SW, SW degradation, and SW performance prediction, exist, but all represent static models, built upon historical data — none of which can calculate an RUL. This paper addresses the application of PHM concepts to software systems for fault predictions and RUL estimation. Specifically, we wish to address how PHM can be used to make decisions for SW systems such as version update, module changes, rejuvenation, maintenance scheduling and abandonment. This paper presents a method to prognostically and continuously predict the RUL of a SW system based on usage parameters (e.g., numbers and categories of releases) and multiple performance parameters (e.g., response time). The model is validated based on actual data (on performance parameters), generated by the test beds versus predicted data, generated by a predictive model. Statistical validation (regression validation) has been carried out as well. The test beds replicate and validate faults, collected from a real application, in a controlled and standard test (staging) environment. A case study based on publicly available data on faults and enhancement requests for the open-source Bugzilla application is presented. This case study demonstrates that PHM concepts can be applied to SW systems and RUL can be calculated to make decisions on software version update or upgrade, module changes, rejuvenation, maintenance schedule and total abandonment.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Aisong Qin ◽  
Qinghua Zhang ◽  
Qin Hu ◽  
Guoxi Sun ◽  
Jun He ◽  
...  

Remaining useful life (RUL) prediction can provide early warnings of failure and has become a key component in the prognostics and health management of systems. Among the existing methods for RUL prediction, the Wiener-process-based method has attracted great attention owing to its favorable properties and flexibility in degradation modeling. However, shortcomings exist in methods of this type; for example, the degradation indicator and the first predicting time (FPT) are selected subjectively, which reduces the prediction accuracy. Toward this end, this paper proposes a new approach for predicting the RUL of rotating machinery based on an optimal degradation indictor. First, a genetic programming algorithm is proposed to construct an optimal degradation indicator using the concept of FPT. Then, a Wiener model based on the obtained optimal degradation indicator is proposed, in which the sensitivities of the dimensionless parameters are utilized to determine the FPT. Finally, the expectation of the predicted RUL is calculated based on the proposed model, and the estimated mean degradation path is explicitly derived. To demonstrate the validity of this model, several experiments on RUL prediction are conducted on rotating machinery. The experimental results indicate that the method can effectively improve the accuracy of RUL prediction.


Author(s):  
Behnam Razavi ◽  
Farrokh Sassani

The tasks of maintenance and repair without optimal planning can be costly and result in prolonged maintenance times, reduced availability and possible flight delays. Aircraft manufacturers and maintainers see significant benefits in constantly improving Health Management and Maintenance (HMM) practices by deploying the most effective maintenance planning strategies. The planning of the maintenance and repair is a complex task due to chain dependency of engines to aircraft, and aircraft to the flight schedules. This paper presents a scheduling method for determining the time of maintenance based on the historical engine operation data in order to maximize the use of estimated remaining useful life of the engines as well as lowering the cost and duration of the downtime. The Time-on-Wing (TOW) data is used in conjunction with probability density functions to determine the shape of the respective distribution of the time of maintenance to minimize the loss of expected remaining useful life. Data from each engine with most chance of failure is then selected and fed into an extended Branch and Bound (B&B) routine to determine the best optimum sequence for entering the facility in order to minimize the waiting time.


Sign in / Sign up

Export Citation Format

Share Document