Impacts of climate change on net crop revenue in North and South China

2014 ◽  
Vol 6 (3) ◽  
pp. 358-378 ◽  
Author(s):  
Jinxia Wang ◽  
Jikun Huang ◽  
Lijuan Zhang ◽  
Yumin Li

Purpose – The purpose of this paper is to explore the impacts of climate change on crop net revenue by region. Particularly, the authors focus on the impact differences between north and south regions. Design/methodology/approach – The authors applied the Ricardian approach which assumes that each farmer wishes to maximize revenue subject to the exogenous conditions of their farm. The climate data are based on actual measurements in 753 national meteorological stations and the socio-economic data covers 8,405 farms across 28 provinces in China. Findings – On average, the rise of annual temperature will hurt farms both in the north or south. The impacts of climate change on both precipitation and temperatures have different seasonal impacts on producers in the north and the south of China. As a consequence, the impact on net farm revenues varies with farms in the north and the south being adversely affected (to different degrees) by a rise in the temperature, but both benefiting from an anticipated increase in rainfall. The results also reveal that irrigation is one key adaption measure to dealing with climate change. Whether in the north or south of China, increasing temperature is beneficial to irrigated farms, while for rainfed farms, higher temperature will result in a reduction in net revenues. The results also reveal that farms in the north are more vulnerable to temperature and precipitation variation than that in the south. Irrigated farms in the south are more vulnerable to precipitation variation than that in the north; but rainfed farms in the north are more vulnerable to precipitation variation than that in the south. Originality/value – Applying empirical analysis to identify the differences of climate change impacts between north and south regions will help policy makers to design reasonable adaptation policies for various regions.

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Yuan Xu ◽  
Jieming Chou ◽  
Fan Yang ◽  
Mingyang Sun ◽  
Weixing Zhao ◽  
...  

Quantitatively assessing the spatial divergence of the sensitivity of crop yield to climate change is of great significance for reducing the climate change risk to food production. We use socio-economic and climatic data from 1981 to 2015 to examine how climate variability led to variation in yield, as simulated by an economy–climate model (C-D-C). The sensitivity of crop yield to the impact of climate change refers to the change in yield caused by changing climatic factors under the condition of constant non-climatic factors. An ‘output elasticity of comprehensive climate factor (CCF)’ approach determines the sensitivity, using the yields per hectare for grain, rice, wheat and maize in China’s main grain-producing areas as a case study. The results show that the CCF has a negative trend at a rate of −0.84/(10a) in the North region, while a positive trend of 0.79/(10a) is observed for the South region. Climate change promotes the ensemble increase in yields, and the contribution of agricultural labor force and total mechanical power to yields are greater, indicating that the yield in major grain-producing areas mainly depends on labor resources and the level of mechanization. However, the sensitivities to climate change of different crop yields to climate change present obvious regional differences: the sensitivity to climate change of the yield per hectare for maize in the North region was stronger than that in the South region. Therefore, the increase in the yield per hectare for maize in the North region due to the positive impacts of climate change was greater than that in the South region. In contrast, the sensitivity to climate change of the yield per hectare for rice in the South region was stronger than that in the North region. Furthermore, the sensitivity to climate change of maize per hectare yield was stronger than that of rice and wheat in the North region, and that of rice was the highest of the three crop yields in the South region. Finally, the economy–climate sensitivity zones of different crops were determined by the output elasticity of the CCF to help adapt to climate change and prevent food production risks.


Significance The extreme cold comes as the province is still dealing with the damage caused by unprecedented levels of heat and wildfires last summer and then record levels of rainfall and flooding in November. Its experience has focused attention on Canada’s wider vulnerability to the impact of shifting weather patterns and climate change. Impacts The natural resource sectors that are vital to Canada’s economy face an increasingly difficult environment for extraction. Indigenous peoples across the country will see their traditional ways of life further disrupted by climate change. The increasingly evident impacts of climate change on day-to-day life will see voters demand greater action from government. Significant investment in green initiatives, clean energy and climate resiliency initiatives will boost green industries.


2020 ◽  
Vol 48 (2) ◽  
pp. 1057-1069
Author(s):  
Radu POPESCU ◽  
Neculae ȘOFLETEA

The research carried out was aimed to assessing the phenological behavior of beech (Fagus sylvatica L.) in the southwestern area of the Carpathians, in submesothermal forest sites, differentiated from the majority mesothermal ones of this species. The data obtained may be used for predicting the phenological changes of the species, especially in the Carpathian area, under the future influence of expected climate change. Assessments for spring and autumn phenology (buds burst -BB and foliation, flowering and leaves senescence) were carried out on a transect with a difference in altitude of 1000 meters, in phenological research areas located at 200 m, 700 m and 1200 m. At each altitude level, 100 trees of I and II Kraft classes were phenologically characterized: 50 trees on the south-facing slope (sunny exposure) and 50 on the north-facing slope (shade exposure).The phenological data were interpreted in relation to climate data recorded in each area by a HOBO U23 Pro v2 sensor. The site conditions of submesothermal climate in the low altitude area led to DOY (day of the year) values below 100. The phenological differentiation of populations is evident in relation with the altitude, while at the same altitudinal level the influence of the exposure was much lower. The gradiental values by altitude sectors highlighted the nonlinearity of the development of foliation phenophase, the value being lower in the first 500 m, where the beech is under the impact of the submesothermal climate. It has been proven both the dependence of the foliation onset depending on the cumulation of temperatures in relation to the DOY moment and also on the values recorded throughout the vegetative rest. The altitudinal gradiental values resulting for flowering in the first and second altitudinal half of transect also differentiate the stands, but are lower than that resulting for BB. The leaves senescence has a delay of 1.8 up to 2.4 days per 100 meters altitude, and the length of the vegetation season is reduced more sharply in the upper half of the analyzed altitudinal transect. The sub-mesothermal climate could be involved in condensation of spring phenophases in the stands of the lower half of the researched area. Our data may be used for predicting the phenological changes, especially in the Carpathian area, under the expected climate change.


Significance His comments are optimistic. The other two rival administrations that are based in Libya have resisted efforts to form a unified government, while armed groups (some associated with the administrations, others independent) compete for local dominance. As a result, intermittent escalations in fighting and sporadic attacks by fringe militias continue to occur in parts of the country. Concern has grown about the impact on civilians. Impacts Bombings and outbreaks of intense fighting will remain a risk in key contested locations in the north. Clashes between militias will recur sporadically in the south. The number of migrants working in Libya and seeking to travel to Europe may increase again.


2014 ◽  
Vol 955-959 ◽  
pp. 3777-3782 ◽  
Author(s):  
Xiao Feng Zhao ◽  
Bin Le Lin

We evaluated land suitability for Jatropha cultivation at a global scale under current and future climate scenarios. Areas that are suitable for Jatropha cultivation include southern South America, the west and southeast coasts of Africa, the north of South Asia, and the north and south coasts of Australia. In the predicted climate change scenarios, areas near the equator become less suitable for Jatropha cultivation, and areas further from the equator become more suitable. Our analyses suggest that the rank order of the six climate change scenarios, from the smallest to the largest effects on Jatropha cultivation, was as follows: B1, A1T/B2, A1B, A2, and A1FI.


Author(s):  
Mohamed Alboghdady ◽  
Salah E. El-Hendawy

Purpose The purpose of this study is to analyze the impact of climate change and variability on agricultural production in Middle East and North Africa region (MENA) where the deleterious impacts of climate change are generally projected to be greatest. Design/methodology/approach The study used a production function model using Fixed Effect Regression (FER) analysis and then using marginal impact analysis to assess the impact of climate change and variability on agricultural production. Therefore, the study utilized panel data for the period 1961-2009 pooled from 20 countries in MENA region. Findings Results showed that 1 per cent increase in temperature during winter resulted in 1.12 per cent decrease in agricultural production. It was also observed that 1 per cent increase in temperature variability during winter and spring resulted in 0.09 and 0.14 per cent decrease in agricultural production, respectively. Results also indicated that increasing precipitation during winter and fall season and precipitation variability during winter and summer seasons had negative impact. The estimated parameters of square temperature and precipitation indicated that climate change has significant nonlinear impacts on agricultural production in MENA region. Originality/value Despite there are many studies on the impact of climate change on agricultural production, there is a lack of publications to address the economic impact of both climate change and variability on agricultural production in MENA region. Thus, these results are more comprehensive and more informative to policymakers than the results from field trials.


2016 ◽  
Vol 9 (1) ◽  
pp. 15-27
Author(s):  
Proloy Deb ◽  
S. Babel

An investigation was carried out to assess the impacts of climate change on rainfed maize yield using a yield response to water stress model (AquaCrop) and to identify suitable adaptation options to minimize the negative impacts on maize yield in East Sikkim, North East India. Crop management and yield data was collected from the field experimental plots for calibration and validation of the model for the study area. The future climate data was developed for two IPCC emission scenarios A2 and B2 based on the global climate model HadCM3 with downscaling of climate to finer spatial resolution using the statistical downscaling model, SDSM. The impact study revealed that there is an expected reduction in maize yield of 12.8, 28.3 and 33.9% for the A2 scenario and 7.5, 19.9 and 29.9% for the B2 scenario during 2012-40, 2041-70 and 2071-99 respectively compared to the average yield simulated during the period of 1961-1990 with observed climate data. The maize yield of same variety under future climate can be maintained or improved from current level by changing planting dates, providing supplement irrigation and managing optimum nutrient.Journal of Hydrology and Meteorology, Vol. 9(1) 2015, p.15-27


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kelechi Johnmary Ani ◽  
Vincent Okwudiba Anyika ◽  
Emmanuel Mutambara

Purpose The purpose of this study is to unravel the changing nature of climate change impact on the food and human security sector of the Nigerian State. Design/methodology/approach This study is an in-depth case study that involves the use of both quantitative and qualitative data. Statistical data on climate variability in Nigeria obtained from reliable databases were use in the making of analysis. Also, data derived from semi-structure interviews and special reports from International Non-governmental organizations on the subject matter were also used in the study. The findings of the study were based on an in-depth analysis of both primary and secondary sources of data. The secondary data were derived from existing published academic works. The primary data was developed using qualitative data that were collected from January to November, 2018 to 2019 in the different regions of Nigeria. For the South East, primary data was collected from Abakaliki, Ebonyi State. In the South-South, primary data was collected from Asaba, Delta State. In the South West, primary data was collected from Barutin, Kwara State. In the North East, primary data was collected from Maiduguri, while in North West, data was collected from Gusau, Zamfara State. In the North Central, data was collected from Markurdi, Benue State. During the data collection, 48 semi-structured Key Informant Interviews (KIIs) were carried out in the six selected research areas that represented their geo-political zones. Six Focus Group Discussions (FGDs) were carried out, one for each of these six selected cities. Each of the Focus Group Discussions comprised between five and seven respondents. The idea of KIIs and FGDs is to allow the respondents to freely express their ideas comprehensively. Again, in other to get varied forms of responses, the respondents are mainly farmers however, a number of NGOs, civil servants, fertilizer sellers, government officials, transporters and aged men and women/retirees. It should be noted that the respondents cut across male and female gender of all ages and ethnic configuration. The respondents were also randomly selected through social networking. To avoid having people of similar The KIIs were three academics; two community leaders; two small scale fish farmers; rice, cassava, fish, livestock and crop farmers. All KIIs ad TIs were transcribed and analysed using thematic content analysis. Findings The findings revealed that climate change has negatively affected food security in Nigeria. it has also led to continuous armed confrontations over natural resources thereby undermining human security in the country. Originality/value This study is 100% original and can be assessed through turn it in evaluation.


Subject The impact of climate change on Maghreb countries. Significance The Maghreb is one of the world's most water-scarce regions. Global warming will exacerbate the ecological, social and economic challenges it already faces. Impacts Water misuse will exacerbate the effects of climate change on the region’s water supplies. Renewable energies will not only help ease climate change impacts, but also diversify regional economies and create employment. Unless climate change adaptation strategies accelerate, Maghreb countries will see a deterioration in living conditions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amanda Oliver

Purpose This study aims to identify Canadian archives that are at risk for climate change threats, to present a snapshot of current practices around disaster planning, sustainability and climate adaptation and to provide recommended next steps for records managers and archivists adapting to climate change. Design/methodology/approach These objectives were achieved by analyzing the geographic locations of Canadian archives in relation to projected climate data and by analyzing the results of a survey distributed to staff at Canadian archival repositories. Findings This study found that all Canadian archives will be impacted by projected changes in both annual mean temperatures and precipitation to the year 2080. Themes that emerged surrounding climate adaptation strategies include the investment in the design and efficiency of spaces housing records and the importance of resilient buildings, the need for increased training on climate change, engaging senior leadership and administrators on climate change and developing regional strategies. Preparing for and mitigating the impact of climate change on the facilities and holdings needs to become a priority. Originality/value This research underscores the importance of developing climate adaptation strategies, considering the sustainability of records management and archival professional practice, increasing the resilience of the facilities and records and strengthening the disaster planning and recovery methods.


Sign in / Sign up

Export Citation Format

Share Document