Retention Modeling at Scholastic Travel Company (A)

Author(s):  
Anton Ovchinnikov ◽  
Scotiabank Scholar

This case, along with its B case (UVA-QA-0865), is an effective vehicle for introducing students to the use of machine-learning techniques for classification. The specific context is predicting customer retention based on a wide range of customer attributes/features. The specific techniques could include (but are not limited to): regressions (linear and logistic), variable selection (forward/backward and stepwise), regularizations (e.g., LASSO), classification and regression trees (CART), random forests, graduate boosted trees (xgboost), neural networks, and support vector machines (SVM).The case is suitable for an advanced data analysis (data science, machine learning, and artificial intelligence) class at all levels: upper-level business undergraduate, MBA, EMBA, as well as specialized graduate or undergraduate programs in analytics (e.g., masters of science in business analytics [MSBA] and masters of management analytics [MMA]) and/or in management (e.g., masters of science in management [MScM] and masters in management [MiM, MM]).The teaching note for the case contains the pedagogy and the analyses, alongside the detailed explanations of the various techniques and their implementations in R (code provided in Exhibits and supplementary files). Python code, as well as the spreadsheet implementation in XLMiner, are available upon request.

Author(s):  
Frederico Luiz Caram ◽  
Bruno Rafael De Oliveira Rodrigues ◽  
Amadeu Silveira Campanelli ◽  
Fernando Silva Parreiras

Code smells or bad smells are an accepted approach to identify design flaws in the source code. Although it has been explored by researchers, the interpretation of programmers is rather subjective. One way to deal with this subjectivity is to use machine learning techniques. This paper provides the reader with an overview of machine learning techniques and code smells found in the literature, aiming at determining which methods and practices are used when applying machine learning for code smells identification and which machine learning techniques have been used for code smells identification. A mapping study was used to identify the techniques used for each smell. We found that the Bloaters was the main kind of smell studied, addressed by 35% of the papers. The most commonly used technique was Genetic Algorithms (GA), used by 22.22% of the papers. Regarding the smells addressed by each technique, there was a high level of redundancy, in a way that the smells are covered by a wide range of algorithms. Nevertheless, Feature Envy stood out, being targeted by 63% of the techniques. When it comes to performance, the best average was provided by Decision Tree, followed by Random Forest, Semi-supervised and Support Vector Machine Classifier techniques. 5 out of the 25 analyzed smells were not handled by any machine learning techniques. Most of them focus on several code smells and in general there is no outperforming technique, except for a few specific smells. We also found a lack of comparable results due to the heterogeneity of the data sources and of the provided results. We recommend the pursuit of further empirical studies to assess the performance of these techniques in a standardized dataset to improve the comparison reliability and replicability.


2021 ◽  
Vol 14 (1) ◽  
pp. 453-463
Author(s):  
Abdul Syukur ◽  
◽  
Deden Istiawan ◽  

LQ45 is an Indonesia Stock Exchange Index (ISX) incorporate of 45 companies that meet certain criteria to target investors for selecting certain stocks. The prediction of stock price direction in the financial world is a major issue. The implementation of machine learning and other algorithms for market price analysis and forecasting is a very promising field. Different types of classification algorithms were used to predict the stock market. However, when individual studies are considered separately there is no clear consensus that algorithms work best. In this research, a comparison framework is proposed, which aims to benchmark the performance of a wide range of classification models and use them to predict the LQ45 index. The data in this research contains the transaction level and capitalization size are obtained from the Indonesian Stock Exchange (ISX). For analysis purposes, we set out 10 classifiers that can be used to build classification models and test their performance in the LQ45 dataset. The performance criterion chosen to measure this effect is accuracy, recall, and precision. The results showed that the random forest algorithm had the best performance for predicting the LQ45 index. Whilst the classification and regression trees, C4.5, support vector machine, and logistic regression algorithms also perform well. Besides, the models based on traditional statisticalbased learners that are Naïve Bayes and linear discriminant analysis seem to underperform for predicting the LQ45 index. These results are not only beneficial to enrichment the machine learning techniques literature but also have a significant influence on the stock market prediction in terms of the ability to predict the LQ45 index.


2019 ◽  
Vol 8 (3) ◽  
pp. 1268-1271

On the 15th of April, 1912 the titanic witnessed a disaster resulting in the sinking of her passengers on the maiden voyage near North Atlantic. Even though it is a very long time since this maritime disaster took place, the idea behind what impacts each individual survival is still a great research attracting researcher’s attention. The approach taken in this paper is to utilize the publically available data set from website called Kaggle. Kaggle is a popular data science webpage that put together information of people in the titanic into a data set for the data mining competition: “Titanic: Machine Learning from Disaster”. The research and comparisons in this paper uses a few machine learning techniques and algorithms to analyse the data for classification and prediction of survivors. The prediction and efficiency of these algorithms depend greatly on data analysis and model. The techniques used to do so are Random Forest, Support Vector Machine, Gradient Boosting Machine.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Author(s):  
Ritu Khandelwal ◽  
Hemlata Goyal ◽  
Rajveer Singh Shekhawat

Introduction: Machine learning is an intelligent technology that works as a bridge between businesses and data science. With the involvement of data science, the business goal focuses on findings to get valuable insights on available data. The large part of Indian Cinema is Bollywood which is a multi-million dollar industry. This paper attempts to predict whether the upcoming Bollywood Movie would be Blockbuster, Superhit, Hit, Average or Flop. For this Machine Learning techniques (classification and prediction) will be applied. To make classifier or prediction model first step is the learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations. Methods: All the techniques related to classification and Prediction such as Support Vector Machine(SVM), Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, Adaboost, and KNN will be applied and try to find out efficient and effective results. All these functionalities can be applied with GUI Based workflows available with various categories such as data, Visualize, Model, and Evaluate. Result: To make classifier or prediction model first step is learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations Conclusion: This paper focuses on Comparative Analysis that would be performed based on different parameters such as Accuracy, Confusion Matrix to identify the best possible model for predicting the movie Success. By using Advertisement Propaganda, they can plan for the best time to release the movie according to the predicted success rate to gain higher benefits. Discussion: Data Mining is the process of discovering different patterns from large data sets and from that various relationships are also discovered to solve various problems that come in business and helps to predict the forthcoming trends. This Prediction can help Production Houses for Advertisement Propaganda and also they can plan their costs and by assuring these factors they can make the movie more profitable.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomoaki Mameno ◽  
Masahiro Wada ◽  
Kazunori Nozaki ◽  
Toshihito Takahashi ◽  
Yoshitaka Tsujioka ◽  
...  

AbstractThe purpose of this retrospective cohort study was to create a model for predicting the onset of peri-implantitis by using machine learning methods and to clarify interactions between risk indicators. This study evaluated 254 implants, 127 with and 127 without peri-implantitis, from among 1408 implants with at least 4 years in function. Demographic data and parameters known to be risk factors for the development of peri-implantitis were analyzed with three models: logistic regression, support vector machines, and random forests (RF). As the results, RF had the highest performance in predicting the onset of peri-implantitis (AUC: 0.71, accuracy: 0.70, precision: 0.72, recall: 0.66, and f1-score: 0.69). The factor that had the most influence on prediction was implant functional time, followed by oral hygiene. In addition, PCR of more than 50% to 60%, smoking more than 3 cigarettes/day, KMW less than 2 mm, and the presence of less than two occlusal supports tended to be associated with an increased risk of peri-implantitis. Moreover, these risk indicators were not independent and had complex effects on each other. The results of this study suggest that peri-implantitis onset was predicted in 70% of cases, by RF which allows consideration of nonlinear relational data with complex interactions.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 684 ◽  
Author(s):  
V V. Ramalingam ◽  
Ayantan Dandapath ◽  
M Karthik Raja

Heart related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need of reliable, accurate and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart related diseases. This paper presents a survey of various models based on such algorithms and techniques andanalyze their performance. Models based on supervised learning algorithms such as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), NaïveBayes, Decision Trees (DT), Random Forest (RF) and ensemble models are found very popular among the researchers.


2018 ◽  
Vol 34 (3) ◽  
pp. 569-581 ◽  
Author(s):  
Sujata Rani ◽  
Parteek Kumar

Abstract In this article, an innovative approach to perform the sentiment analysis (SA) has been presented. The proposed system handles the issues of Romanized or abbreviated text and spelling variations in the text to perform the sentiment analysis. The training data set of 3,000 movie reviews and tweets has been manually labeled by native speakers of Hindi in three classes, i.e. positive, negative, and neutral. The system uses WEKA (Waikato Environment for Knowledge Analysis) tool to convert these string data into numerical matrices and applies three machine learning techniques, i.e. Naive Bayes (NB), J48, and support vector machine (SVM). The proposed system has been tested on 100 movie reviews and tweets, and it has been observed that SVM has performed best in comparison to other classifiers, and it has an accuracy of 68% for movie reviews and 82% in case of tweets. The results of the proposed system are very promising and can be used in emerging applications like SA of product reviews and social media analysis. Additionally, the proposed system can be used in other cultural/social benefits like predicting/fighting human riots.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Majid Amirfakhrian ◽  
Mahboub Parhizkar

AbstractIn the next decade, machine vision technology will have an enormous impact on industrial works because of the latest technological advances in this field. These advances are so significant that the use of this technology is now essential. Machine vision is the process of using a wide range of technologies and methods in providing automated inspections in an industrial setting based on imaging, process control, and robot guidance. One of the applications of machine vision is to diagnose traffic accidents. Moreover, car vision is utilized for detecting the amount of damage to vehicles during traffic accidents. In this article, using image processing and machine learning techniques, a new method is presented to improve the accuracy of detecting damaged areas in traffic accidents. Evaluating the proposed method and comparing it with previous works showed that the proposed method is more accurate in identifying damaged areas and it has a shorter execution time.


Sign in / Sign up

Export Citation Format

Share Document