Computational model for predicting the effect of process parameters on surface characteristics of mass finished components

2016 ◽  
Vol 33 (3) ◽  
Author(s):  
Venkatesh Vijayaraghavan ◽  
Sylvie Castagne

Purpose Mass finishing is a commonly employed surface finishing process for improving surface characteristics of aerospace engineering components. Optimization of surface characteristics of such critical components require an explicit computational model that can describe the surface characteristics of the finished component. This paper aims to develop an explicit computational model that can describe the surface roughness as a function of various process parameters which influence the mass finishing process. Design/methodology/approach In the present work, the authors propose to study the roughness characteristics using a combined evolutionary computing approach based on Multi-Adaptive Regression Splines (MARS) and Genetic Programming (GP) techniques. Findings The authors conducted sensitivity and parametric analysis to capture the dynamics of surface characteristics by unveiling dominant input variables and hidden non-linear relationships. It is found that by regulating the process time and media size, a greatest variation in surface finish reduction can be achieved in mass finishing process. Originality/value To the best of authors knowledge, for the first time a hybrid evolutionary computational technique has been proposed in this work. The authors combined two powerful evolutionary techniques, namely Multi-variate Adaptive Regressive Splines and Genetic Programming approach. The proposed approach was able to capture the dynamics of surface roughness with higher accuracy as comparable to that of the experiments.

2020 ◽  
Vol 4 (1) ◽  
pp. 110-116
Author(s):  
Pavana Kumara ◽  
V. Vijendra Bhat ◽  
G. K. Purohit

Burnishing is becoming a promising surface finishing process to enhance materials surface properties.  The control of the various process parameters yields the desired surface characteristics in brass materials. In the current work, free machining brass specimens were burnished by Abrasive Assisted Burnishing(AAB) process and Plain Burnishing (PB) process using ball burnishing tool.  Response Surface Methodology was used to design the experiments in which Burnishing Force, Speed, Feed and Number of Passes were chosen as the process parameters. The minimum surface roughness achieved by PB and AAB was 0.1451 µm and 0.1041 µm respectively. The maximum surface hardness achieved using PB and AAB on the brass specimen was 207 HV and 248 HV respectively. The ball burnishing of free machining brass by AAB resulted in better surface characteristics as compared to the PB process.


2010 ◽  
Vol 29-32 ◽  
pp. 669-674
Author(s):  
Yun Peng Zhang ◽  
Jian She Guo ◽  
Guang Biao Sun ◽  
An Zhou Zhang

The machining process produces surfaces that require some form of finishing operation to improve the surface quality. Aiming at the problem of effective finishing for rough surface, the two stages high frequency short pulse electrochemical mechanical finishing (PECMF) technology is proposed. The composition of test equipment and principles of constant pressure regulating in flat and curve surface finishing process are discussed respectively, and the electrochemical finishing device and a series of cathode tools are designed. Systematic process parameters experiment for superalloyGH188 is carried using Taguchi methodology, the technology rule of process parameters on surface roughness is analyzed and a set of optimized process parameters were obtained. The results have shown that the constant pressure PECMP technology can significantly improve the surface roughness to Ra0.2175μm. The interaction effect between electrochemical anodic solution and mechanical polishing is important for improving the surface roughness in high frequency short pulse electrochemical mechanical finishing process.


Ceramics ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 397-407
Author(s):  
Eckart Uhlmann ◽  
Anton Hoyer

Brushing with bonded abrasives is a flexible finishing process used for the deburring and the rounding of workpiece edges as well as for the reduction of the surface roughness. Although industrially widespread, insufficient knowledge about the contact behavior of the abrasive filaments mainly causes applications to be based on experiential values. Therefore, this article aims to increase the applicability of physical process models by introducing a new prediction method, correlating the contact forces of single abrasive filaments, obtained by means of a multi-body simulation, with the experimentally determined process forces of full brushing tools during the surface finishing of ZrO2. It was concluded that aggressive process parameters may not necessarily lead to maximum productivity due to increased tool wear, whereas less aggressive process parameters might yield equally high contact forces and thus higher productivity.


Author(s):  
Ravi Datt Yadav ◽  
Anant Kumar Singh ◽  
Kunal Arora

Fine finishing of spur gears reduces the vibrations and noise and upsurges the service life of two mating gears. A new magnetorheological gear profile finishing (MRGPF) process is utilized for the fine finishing of spur gear teeth profile surfaces. In the present study, the development of a theoretical mathematical model for the prediction of change in surface roughness during the MRGPF process is done. The present MRGPF is a controllable process with the magnitude of the magnetic field, therefore, the effect of magnetic flux density (MFD) on the gear tooth profile has been analyzed using an analytical approach. Theoretically calculated MFD is validated experimentally and with the finite element analysis. To understand the finishing process mechanism, the different forces acting on the gear surface has been investigated. For the validation of the present roughness model, three sets of finishing cycle experimentations have been performed on the spur gear profile by the MRGPF process. The surface roughness of the spur gear tooth surface after experimentation was measured using Mitutoyo SJ-400 surftest and is equated with the values of theoretically calculated surface roughness. The results show the close agreement which ranges from −7.69% to 2.85% for the same number of finishing cycles. To study the surface characteristics of the finished spur gear tooth profile surface, scanning electron microscopy is used. The present developed theoretical model for surface roughness during the MRGPF process predicts the finishing performance with cycle time, improvement in the surface quality, and functional application of the gears.


2019 ◽  
Vol 3 (1) ◽  
pp. 27
Author(s):  
Joselito Alcaraz ◽  
Kunal Ahluwalia ◽  
Swee-Hock Yeo

Vibratory finishing is a versatile and efficient surface finishing process widely used to finish components of various functionalities. Research efforts were focused in fundamental understanding of the process through analytical solutions and simulations. On the other hand, predictive modelling of surface roughness using computational intelligence (CI) methods are emerging in recent years, though CI methods have not been extensively applied yet to a new vibratory finishing method called double-vibropolishing. In this study, multi-variable regression, artificial neural networks, and genetic programming models were designed and trained with experimental data obtained from subjecting rectangular Ti-6Al-4V test coupons to double vibropolishing in a bowl system configuration. Model selection was done by comparing the mean-absolute percentage error and r-squared values from both training and testing datasets. Exponential regression was determined as the best model for the bowl double-vibropolishing system studied with a Test MAPE score of 6.1% and a R-squared score of 0.99. A family of curves was generated using the exponential regression model as a potential tool in predicting surface roughness with time.


2018 ◽  
Vol 190 ◽  
pp. 11005 ◽  
Author(s):  
Marco Posdzich ◽  
Rico Stöckmann ◽  
Florian Morczinek ◽  
Matthias Putz

Burnishing is an effective chipless finishing process for improving workpiece properties: hardness, vibration resistance and surface quality. The application of this technology is limited to rotationally symmetrical structures of deformable metals. Because of the multiaxial characteristics, the transfer of this force controlled technology on to prismatic shapes requires a comprehensive process development. The main purpose of this paper is the characterization of a plain burnishing process on aluminium EN AW 2007 with a linear moved, spherical diamond tool. The method of design of experiments was used to investigate the influence of different machined surfaces in conjunction with process parameters: burnishing force, burnishing direction, path distance and burnishing speed. FEM simulation was utilized for strain and stress analysis. The experiments show, that unlike the process parameters the initial surface roughness as 3rd order shape deviation does not have a significant influence on the finished surface. Furthermore a completely new surface is created by the process, with properties independent from the initial surface roughness.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4117 ◽  
Author(s):  
Marcin Stańczyk ◽  
Tomasz Figlus

Vibro-abrasive processing is the basic method for the mass finishing of parts and components in various industries. Continuous progress in the development of processing media and machine design solutions means that every research effort into vibro-abrasive processing broadens the scope of knowledge in the selection of media, parameters, and applications in various industry fields. In this paper, an attempt is made to parametrize the vibratory grinding process, which is one of the three stages of high gloss finishing. Samples of the 6082 aluminium alloy intended for use in loaded machine parts and forged car wheel rims were subject to a research analysis. The samples were processed in a rotary vibrator equipped with a sample fixing system, using resin media and auxiliary com-pounds. On the basis of the analysis, the processing capacities were determined for the selected conditions and abrasive media. The influence of time and applied processing media on the change in samples’ roughness was determined. The effects of processing were examined with the use of laser devices measuring surface roughness in the areas of 3D and 2D analysis. The analysis of the test results showed that the use of S12TZ type resin media in a 12-hour finishing process of the 6082 aluminium alloy allowed for a 75.5% reduction in surface roughness, which corresponds to approximately 6.3% per hour of processing.


2016 ◽  
Vol 22 (3) ◽  
pp. 495-503 ◽  
Author(s):  
Rebecca Klingvall Ek ◽  
Lars-Erik Rännar ◽  
Mikael Bäckstöm ◽  
Peter Carlsson

Purpose The surface roughness of products manufactured using the additive manufacturing (AM) technology of electron beam melting (EBM) has a special characteristic. Different product applications can demand rougher or finer surface structure, so the purpose of this study is to investigate the process parameters of EBM to find out how they affect surface roughness. Design/methodology/approach EBM uses metal powder to manufacture metal parts. A design of experiment plan was used to describe the effects of the process parameters on the average surface roughness of vertical surfaces. Findings The most important electron beam setting for surface roughness, according to this study, is a combination of “speed and current” in the contours. The second most important parameter is “contour offset”. The interaction between the “number of contours” and “contour offset” also appears to be important, as it shows a much higher probability of being active than any other interaction. The results show that the “line offset” is not important when using contours. Research limitations/implications This study examined “contour offset”, “number of contours”, “speed in combination with current” and “line offset”, which are process parameters controlling the electron beam. Practical implications The surface properties could have an impact on the product’s performance. A reduction in surface processing will not only save time and money but also reduce the environmental impact. Originality/value Surface properties are important for many products. New themes containing process parameters have to be developed when introducing new materials to EBM manufacturing. During this process, it is very important to understand how the electron beam affects the melt pool.


Sign in / Sign up

Export Citation Format

Share Document