Multi-scale analysis of streamflow using the Hilbert-Huang Transform

2014 ◽  
Vol 24 (6) ◽  
pp. 1363-1377 ◽  
Author(s):  
Chongli Di ◽  
Xiaohua Yang ◽  
Xuejun Zhang ◽  
Jun He ◽  
Ying Mei

Purpose – The purpose of this paper is to simulate and analyze accurately the multi-scale characteristics, variation periods and trends of the annual streamflow series in the Haihe River Basin (HRB) using the Hilbert-Huang Transform (HHT). Design/methodology/approach – The Empirical Mode Decomposition (EMD) approach is adopted to decompose the original signal into intrinsic mode functions (IMFs) in multi-scales. The Hilbert spectrum is applied to each IMF component and the localized time-frequency-energy distribution. The monotonic residues obtained by EMD can be treated as the trend of the original sequence. Findings – The authors apply HHT to 14 hydrological stations in the HRB. The annual streamflow series are decomposed into four IMFs and a residual component, which exhibits the multi-scale characteristics. After the Hilbert transform, the instantaneous frequency, center frequency and mean period of the IMFs are obtained. Common multi-scale periods of the 14 series exist, e.g. 3.3a, 4∼7a, 8∼10a, 11-14a, 24∼25a and 43∼45a. The residues indicate that the annual streamflow series has exhibited a decreasing trend over the past 50 years. Research limitations/implications – The HHT method is still in its early stages of application in hydrology and needs to be further tested. Practical implications – It is helpful for the study of the complex features of streamflow. Social implications – This paper will contribute to the sustainable utilization of water resources. Originality/value – This study represents the first use of the HHT method to analyze the multi-scale characteristics of the streamflow series in the HRB. This paper provides an important theoretical support for water resources management.

Sensor Review ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Huiliang Cao ◽  
Rang Cui ◽  
Wei Liu ◽  
Tiancheng Ma ◽  
Zekai Zhang ◽  
...  

Purpose To reduce the influence of temperature on MEMS gyroscope, this paper aims to propose a temperature drift compensation method based on variational modal decomposition (VMD), time-frequency peak filter (TFPF), mind evolutionary algorithm (MEA) and BP neural network. Design/methodology/approach First, VMD decomposes gyro’s temperature drift sequence to obtain multiple intrinsic mode functions (IMF) with different center frequencies and then Sample entropy calculates, according to the complexity of the signals, they are divided into three categories, namely, noise signals, mixed signals and temperature drift signals. Then, TFPF denoises the mixed-signal, the noise signal is directly removed and the denoised sub-sequence is reconstructed, which is used as training data to train the MEA optimized BP to obtain a temperature drift compensation model. Finally, the gyro’s temperature characteristic sequence is processed by the trained model. Findings The experimental result proved the superiority of this method, the bias stability value of the compensation signal is 1.279 × 10–3°/h and the angular velocity random walk value is 2.132 × 10–5°/h/vHz, which is improved compared to the 3.361°/h and 1.673 × 10–2°/h/vHz of the original output signal of the gyro. Originality/value This study proposes a multi-dimensional processing method, which treats different noises separately, effectively protects the low-frequency characteristics and provides a high-precision training set for drift modeling. TFPF can be optimized by SEVMD parallel processing in reducing noise and retaining static characteristics, MEA algorithm can search for better threshold and connection weight of BP network and improve the model’s compensation effect.


2013 ◽  
Vol 823 ◽  
pp. 417-421 ◽  
Author(s):  
Feng Yun Huang ◽  
Huan Huan Sun ◽  
Hao Pan ◽  
Wei Ru Zhang

For the multi-time scale characteristics of vibration signal, a composite multi-frequency dictionary combining the low-frequency Fourier dictionary and the high-frequency impulse time-frequency dictionary is constituted, to decompose multi-component vibration signal into the combination of several one-component signals. The use of empirical model decomposition (EDM) in high-frequency impulse Component signal including feature information is to realize segmented Hilbert-Huang transform of signal and to acquire the time-frequency representation of every one-component signal, which is the process of fault information extraction of vibration signal. The application of the method in main reducer fault diagnosis verifies the engineering practicability and validity of the new algorithm.


2011 ◽  
Vol 1 (32) ◽  
pp. 25
Author(s):  
Shigeru Kato ◽  
Magnus Larson ◽  
Takumi Okabe ◽  
Shin-ichi Aoki

Turbidity data obtained by field observations off the Tenryu River mouth were analyzed using the Hilbert-Huang Transform (HHT) in order to investigate the characteristic variations in time and in the frequency domain. The Empirical Mode Decomposition (EMD) decomposed the original data into only eight intrinsic mode functions (IMFs) and a residue in the first step of the HHT. In the second step, the Hilbert transform was applied to the IMFs to calculate the Hilbert spectrum, which is the time-frequency distribution of the instantaneous frequency and energy. The changes in instantaneous frequencies showed correspondence to high turbidity events in the Hilbert spectrum. The investigation of instantaneous frequency variations can be used to understand transitions in the state of the turbidity. The comparison between the Fourier spectrum and the Hilbert spectrum integrated in time showed that the Hilbert spectrum makes it possible to detect and quantify the cycle of locally repeated events.


2019 ◽  
Vol 9 (10) ◽  
pp. 2017 ◽  
Author(s):  
Juncai Xu ◽  
Bangjun Lei

Data interpretation is the crucial scientific component that influences the inspection accuracy of ground penetrating radar (GPR). Developing algorithms for interpreting GPR data is a research focus of increasing interest. The problem of algorithms for interpreting GPR data is unresolved. To this end, this study proposes a sophisticated algorithm for interpreting GPR data with the aim of improving the inspection resolution. The algorithm is formulated by integrating variational mode decomposition (VMD) and Hilbert–Huang transform techniques. With this method, the intrinsic mode function of the GPR data is first produced using the VMD of the data, followed by obtaining the instantaneous frequency by using the Hilbert–Huang transform to analyze the intrinsic mode functions. The instantaneous frequency data can be decomposed into three frequency attributes, including frequency division section, time-frequency section, and space frequency section, which constitute a platform to gain insight into the nature of the GPR data, such that the inspected media components can be examined. The effectiveness of the proposed method on a synthetic signal from a GPR forward model was studied, with the multi-resolution performance being tested. Inspecting the media of a highroad by analyzing the GPR data, with the abnormal characteristics being designated, validated the applicability of the proposed method.


2019 ◽  
Vol 10 (1) ◽  
pp. 118-132
Author(s):  
Nadia Nurnajihah M. Nasir ◽  
Salvinder Singh ◽  
Shahrum Abdullah ◽  
Sallehuddin Mohamed Haris

Purpose The purpose of this paper is to present the application of Hilbert–Huang transform (HHT) for fatigue damage feature characterisation in the time–frequency domain based on strain signals obtained from the automotive coil springs. Design/methodology/approach HHT was employed to detect the temporary changes in frequency characteristics of the vibration response of the signals. The extraction successfully reduced the length of the original signal to 40 per cent, whereas the fatigue damage was retained. The analysis process for this work is divided into three stages: signal characterisation with the application of fatigue data editing (FDE) for fatigue life assessment, empirical mode decomposition with Hilbert transform, an energy–time–frequency distribution analysis of each intrinsic mode function (IMF). Findings The edited signal had a time length of 72.5 s, which was 40 per cent lower than the original signal. Both signals were retained statistically with close mean, root-mean-square and kurtosis value. FDE improved the fatigue life, and the extraction did not affect the content and behaviour of the original signal because the editing technique only removed the minimal fatigue damage potential. HHT helped to remove unnecessary noise in the recorded signals. EMD produced sets of IMFs that indicated the differences between the original signal and mean of the signal to produce new components. The low-frequency energy was expected to cause large damage, whereas the high-frequency energy will cause small damage. Originality/value HHT and EMD can be used in the strain data signal analysis of the automotive component of a suspension system. This is to improve the fatigue life, where the extraction did not affect the content and behaviour of the original signal because the editing technique only removed the minimal fatigue damage potential.


2013 ◽  
Vol 273 ◽  
pp. 264-268 ◽  
Author(s):  
Ling Li Jiang ◽  
Bo Bo Li ◽  
Xue Jun Li

Hilbert-Huang transform (HHT) is a very effective time-frequency analysis method, but it has some disadvantages. For example, the dense modal signal cannot be decomposed completely, and redundancy intrinsic mode functions (IMFs) are easy emerging at low frequency, which will cause the distortion of the processing results. In view of the above questions, this study applies the wavelet packet transform for denoising before HHT for improving the dense modal problem, and applies the correlation coefficient method to eliminate the redundancy IMF. The fault diagnostic case of roller bearing shows the effectiveness of the proposed method.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 684 ◽  
Author(s):  
Wu Deng ◽  
Hailong Liu ◽  
Shengjie Zhang ◽  
Haodong Liu ◽  
Huimin Zhao ◽  
...  

A motor bearing system is a nonlinear dynamics system with nonlinear support stiffness. It is an asymmetry system, which plays an extremely important role in rotating machinery. In this paper, a center frequency method of double thresholds is proposed to improve the variational mode decomposition (VMD) method, then an adaptive VMD (called DTCFVMD) method is obtained to extract the fault feature. In the DTCFVMD method, a center frequency method of double thresholds is a symmetry method, which is used to determine the decomposed mode number of VMD according to the power spectrum of the signal. The proposed DTCFVMD method is used to decompose the nonlinear and non-stationary vibration signals of motor bearing in order to obtain a series of intrinsic mode functions (IMFs) under different scales. Then, the Hilbert transform is used to analyze the envelope of each mode component and calculate the power spectrum of each mode component. Finally, the power spectrum is used to extract the fault feature frequency for determining the fault type of the motor bearing. To test and verify the effectiveness of the DTCFVMD method, the actual fault vibration signal of the motor bearing is selected in here. The experimental results show that the center frequency method of double thresholds can effectively determine the mode number of the VMD method, and the proposed DTCFVMD method can accurately extract the clear time frequency characteristics of each mode component, and obtain the fault characteristics of characteristics; frequency, rotating frequency, and frequency doubling and so on.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 736 ◽  
Author(s):  
Jing Xu ◽  
Zhongbin Wang ◽  
Chao Tan ◽  
Daohua Lu ◽  
Baigong Wu ◽  
...  

Recently, sound-based diagnosis systems have been given much attention in many fields due to the advantages of their simple structure, non-touching measurement style, and low-power dissipation. In order to improve the efficiency of coal production and the safety of the coal mining process, accurate information is always essential. It is indicated that the sound signal produced during the cutting process of the coal mining shearer contains much cutting pattern identification information. In this paper, the original acoustic signal is first collected through an industrial microphone. To analyze the signal deeply, an adaptive Hilbert–Huang transform (HHT) was applied to decompose the sound to several intrinsic mode functions (IMFs) to subsequently acquire 1024 Hilbert marginal spectrum points. The 1024 time-frequency nodes were reorganized as a 32 × 32 feature map. Moreover, the LeNet-5 convolutional neural network (CNN), with three convolution layers and two sub-sampling layers, was used as the cutting pattern recognizer. A simulation example, with 10,000 training samples and 2000 testing samples, was conducted to prove the effectiveness of the proposed method. Finally, 1971 testing sound series were recognized accurately through the trained CNN and the proposed method achieved an identification rate of 98.55%.


2013 ◽  
Vol 336-338 ◽  
pp. 928-931
Author(s):  
Chia Liang Lu ◽  
Pei Hwa Huang

Low frequency oscillations due to the lack of damping may occur in power systems under normal operation and will cause system instability. These oscillations are essentially nonlinear power responses which are difficult to extract the inherent characteristics by the time domain method. This paper aims to analyze nonlinear power responses by using the Hilbert-Huang transform (HHT) which is a time-frequency signal processing method which comprises steps of the empirical mode decomposition and the Hilbert transform. Dynamic power system responses, including generator output power and line power are to be processed by the HHT and a set of intrinsic mode functions and the associated Hilbert spectrum are obtained. The generator with most effects on the system will be accordingly found out through the time-frequency analysis and the power system stabilizer will be placed at the generator. Numerical results from a sample power system are demonstrated to show the validity of the time-frequency approach in the study of power system low frequency oscillations.


Author(s):  
Qingmi Yang

Hilbert-Huang transform (HHT) is a nonlinear non-stationary signal processing technique, which is more effective than traditional time-frequency analysis methods in complex seismic signal processing. However, this method has problems such as modal aliasing and end effect. The problem causes the accuracy of signal processing to drop. Therefore, this paper introduces the method of combining the Ensemble Empirical Mode Decomposition (EEMD) and the Normalized Hilbert transform (NHT) to extract the instantaneous properties. The specific process is as follows: First, the EEMD method is used to decompose the seismic signal to a series of Intrinsic Mode Functions (IMF), and then The IMFs is screened by using the relevant properties, and finally the NHT is performed on the IMF to obtain the instantaneous properties.


Sign in / Sign up

Export Citation Format

Share Document