Numerical study on slip flow using the discrete unified gas-kinetic scheme

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wenqiang Guo ◽  
Guoxiang Hou ◽  
Yin Guan ◽  
Senyun Liu

Purpose This paper aims to explore the mechanism of the slip phenomenon at macro/micro scales, and analyze the effect of slip on fluid flow and heat transfer, to reduce drag and enhance heat transfer. Design/methodology/approach The improved tangential momentum accommodation coefficient scheme incorporated with Navier’s slip model is introduced to the discrete unified gas kinetic scheme as a slip boundary condition. Numerical tests are simulated using the D2Q9 model with a code written in C++. Findings Velocity contour with slip at high Re is similar to that without slip at low Re. For flow around a square cylinder, the drag is reduced effectively and the vortex shedding frequency is reduced. For flow around a delta wing, drag is reduced and lift is increased significantly. For Cu/water nanofluid in a channel with surface mounted blocks, drag can be reduced greatly by slip and the highest value of drag reduction (DR) (67.63%) can be obtained. The highest value of the increase in averaged Nu (11.78%) is obtained by slip at Re = 40 with volume fraction φ=0.01, which shows that super-hydrophobic surface can enhance heat transfer by slip. Originality/value The present study introduces and proposes an effective and superior method for the numerical simulation of fluid/nanofluid slip flow, which has active guidance meaning and applied value to the engineering practice of DR, heat transfer, flow control and performance improvement.

Author(s):  
Cornelia Revnic ◽  
Eiyad Abu-Nada ◽  
Teodor Grosan ◽  
Ioan Pop

Purpose This paper aims to develop a numerical study of the steady natural convection in a rectangular cavity filled with the CuO–water-based nanofluid. It is assumed that the viscosity of nanofluids depends on the temperature and on the nanofluids volume fraction. Design/methodology/approach The mathematical nanofluid model has been formulated on the basis of the model proposed by Buongiorno (2006). The system of partial differential equations is written in terms of a dimensionless stream function, vorticity, temperature and the volume fraction of the nanoparticles, and is solved numerically using the finite difference method for different values of the governing parameters. Findings It is found that both fluid flow and heat transfer coefficient are affected by the considered parameters. Thus, the Nusselt number is slowly increasing with increasing volume fraction from 2 per cent to 5 per cent and it is more pronounced increasing with increasing Rayleigh number from 103 to 105. Originality/value Buongiorno’s (2006) nanofluid model has been applied for the flow with the characteristics as mentioned in the paper. A comprehensive survey on the behavior of flow and heat transfer characteristics has been presented. All plots presented in the paper are new and are not reported in any other study.


2017 ◽  
Vol 27 (10) ◽  
pp. 2333-2354 ◽  
Author(s):  
Ruhaila Md Kasmani ◽  
S. Sivasankaran ◽  
M. Bhuvaneswari ◽  
Ahmed Kadhim Hussein

Purpose The purpose of this study is to investigate the Soret and Dufour effects on the double-diffusive convective boundary layer flow of a nanofluid past a moving wedge in the presence of suction. Design/methodology/approach The similarity transformation is applied to convert the governing nonlinear partial differential equations into ordinary differential equations. Then, they are solved numerically by the fourth-order Runge–Kutta–Gill method along with the shooting technique and the Newton–Raphson method. In addition, the ordinary differential equations are also analytically solved by the homotopy analysis method. Findings The results for dimensionless velocity, temperature, solutal concentration and nanoparticle volume fraction profiles, as well as local skin friction coefficient and local Nusselt and local Sherwood numbers are presented through the plots for various combinations of pertinent parameters involved in the study. The heat transfer rate increases on increasing the Soret parameter and it decreases on increasing the Dufour parameter. The mass transfer behaves oppositely to heat transfer. Practical implication In engineering applications, a wedge is used to hold objects in place, such as engine parts in the gate valves. A gate valve is the valve that opens by lifting a wedge-shaped disc to control the timing and quantity of fluid flow into an engine. Originality/value No such investigation is available in literature, and therefore, the results obtained are novel.


Author(s):  
Ajay Vallabh ◽  
P.S. Ghoshdastidar

Abstract This paper presents a steady-state heat transfer model for the natural convection of mixed Newtonian-Non-Newtonian (Alumina-Water) and pure Non-Newtonian (Alumina-0.5 wt% Carboxymethyl Cellulose (CMC)/Water) nanofluids in a square enclosure with adiabatic horizontal walls and isothermal vertical walls, the left wall being hot and the right wall cold. In the first case the nanofluid changes its Newtonian character to Non-Newtonian past 2.78% volume fraction of the nanoparticles. In the second case the base fluid itself is Non-Newtonian and the nanofluid behaves as a pure Non-Newtonian fluid. The power-law viscosity model has been adopted for the non-Newtonian nanofluids. A finite-difference based numerical study with the Stream function-Vorticity-Temperature formulation has been carried out. The homogeneous flow model has been used for modelling the nanofluids. The present results have been extensively validated with earlier works. In Case I the results indicate that Alumina-Water nanofluid shows 4% enhancement in heat transfer at 2.78% nanoparticle concentration. Following that there is a sharp decline in heat transfer with respect to that in base fluid for nanoparticle volume fractions equal to and greater than 3%. In Case II Alumina-CMC/Water nanofluid shows 17% deterioration in heat transfer with respect to that in base fluid at 1.5% nanoparticle concentration. An enhancement in heat transfer is observed for increase in hot wall temperature at a fixed volume fraction of nanoparticles, for both types of nanofluid.


2017 ◽  
Vol 27 (10) ◽  
pp. 2259-2267 ◽  
Author(s):  
Mustafa Turkyilmazoglu

Purpose This paper aims to working out exact solutions for the boundary layer flow of some nanofluids over porous stretching/shrinking surfaces with different configurations. To serve to this aim, five types of nanoparticles together with the water as base fluid are under consideration, namely, Ag, Cu, CuO, Al2O3 and TiO2. Design/methodology/approach The physical flow is affected by the presence of velocity slip as well as temperature jump conditions. Findings The knowledge on the influences of nanoparticle volume fraction on the practically significant parameters, such as the skin friction and the rate of heat transfer, for the above considered nanofluids, is easy to gain from the extracted explicit formulas. Originality/value Particularly, formulas clearly point that the heat transfer rate is not only dependent on the thermal conductivity of the material but it also highly relies on the heat capacitance as well as the density of the nanofluid under consideration.


Author(s):  
Ahmada Omar Ali ◽  
Oluwole Daniel Makinde ◽  
Yaw Nkansah-Gyekye

Purpose – The purpose of this paper is to investigate numerically the unsteady MHD Couette flow and heat transfer of viscous, incompressible and electrically conducting nanofluids between two parallel plates in a rotating channel. Design/methodology/approach – The nanofluid is set in motion by the combined action of moving upper plate, Coriolis force and the constant pressure gradient. The channel rotates in unison about an axis normal to the plates. The nonlinear governing equations for velocity and heat transfer are obtained and solved numerically using semi-discretization, shooting and collocation (bvp4c) techniques together with Runge-Kutta Fehlberg integration scheme. Findings – Results show that both magnetic field and rotation rate demonstrate significant effect on velocity and heat transfer profiles in the system with Cu-water nanofluid demonstrating the highest velocity and heat transfer efficiency. These numerical results are in excellent agreements with the results obtained by other methods. Practical implications – This paper provides a very useful source of information for researchers on the subject of hydromagnetic nanofluid flow in rotating systems. Originality/value – Couette flow of nanofluid in the presence of applied magnetic field in a rotating channel is investigated.


2019 ◽  
Vol 29 (10) ◽  
pp. 3908-3937 ◽  
Author(s):  
Younes Menni ◽  
Ahmed Azzi ◽  
Ali J. Chamkha ◽  
Souad Harmand

Purpose The purpose of this paper is to carry out a numerical study on the dynamic and thermal behavior of a fluid with a constant property and flowing turbulently through a two-dimensional horizontal rectangular channel. The upper surface was put in a constant temperature condition, while the lower one was thermally insulated. Two transverse, solid-type obstacles, having different shapes, i.e. flat rectangular and V-shaped, were inserted into the channel and fixed to the top and bottom walls of the channel, in a periodically staggered manner to force vortices to improve the mixing, and consequently the heat transfer. The flat rectangular obstacle was put in the first position and was placed on the hot top wall of the channel. However, the second V-shaped obstacle was placed on the insulated bottom wall, at an attack angle of 45°; its position was varied to find the optimum configuration for optimal heat transfer. Design/methodology/approach The fluid is considered Newtonian, incompressible with constant properties. The Reynolds averaged Navier–Stokes equations, along with the standard k-epsilon turbulence model and the energy equation, are used to control the channel flow model. The finite volume method is used to integrate all the equations in two-dimensions; the commercial CFD software FLUENT along with the SIMPLE-algorithm is used for pressure-velocity coupling. Various values of the Reynolds number and obstacle spacing were selected to perform the numerical runs, using air as the working medium. Findings The channel containing the flat fin and the 45° V-shaped baffle with a large Reynolds number gave higher heat transfer and friction loss than the one with a smaller Reynolds number. Also, short separation distances between obstacles provided higher values of the ratios Nu/Nu0 and f/f0 and a larger thermal enhancement factor (TEF) than do larger distances. Originality/value This is an original work, as it uses a novel method for the improvement of heat transfer in completely new flow geometry.


2016 ◽  
Vol 26 (5) ◽  
pp. 1416-1432 ◽  
Author(s):  
Saman Rashidi ◽  
Javad Abolfazli Esfahani ◽  
Mohammad Sadegh Valipour ◽  
Masoud Bovand ◽  
Ioan Pop

Purpose – The analysis of the flow field and heat transfer around a tube row or tube banks wrapped with porous layer have many related engineering applications. Examples include the reactor safety analysis, combustion, compact heat exchangers, solar power collectors, high-performance insulation for buildings and many another applications. The purpose of this paper is to perform a numerical study on flows passing through two circular cylinders in side-by-side arrangement wrapped with a porous layer under the influence of a magnetic field. The authors focus the attention to the effects of magnetic field, Darcy number and pitch ratio on the mechanism of convection heat transfer and flow structures. Design/methodology/approach – The Darcy-Brinkman-Forchheimer model for simulating the flow in porous medium along with the Maxwell equations for providing the coupling between the flow field and the magnetic field have been used. Equations with the relevant boundary conditions are numerically solved using a finite volume approach. In this study, Stuart and Darcy numbers are varied within the range of 0 < N < 3 and 1e-6 < Da < 1e-2, respectively, and Reynolds and Prandtl numbers are equal to Re=100 and Pr=0.71, respectively. Findings – The results show that the drag coefficient decreases for N < 0.6 and increases for N > 0.6. Also, the effect of magnetic field is negligible in the gap between two cylinders because the magnetic field for two cylinders counteracts each other in these regions. Originality/value – To the authors knowledge, in the open literature, flow passing over two circular cylinders in side-by-side arrangement wrapped with a porous layer has been rarely investigated especially under the influence of a magnetic field.


Author(s):  
Mikhail A. Sheremet ◽  
Ioan Pop ◽  
A. Cihat Baytas

Purpose This study aims to numerically analyze natural convection of alumina-water nanofluid in a differentially-heated square cavity partially filled with a heat-generating porous medium. A single-phase nanofluid model with experimental correlations for the nanofluid viscosity and thermal conductivity has been considered for the description of the nanoparticles transport effect in the present study. Local thermal non-equilibrium approach for the porous layer with the Brinkman-extended Darcy model has been used. Design/methodology/approach Dimensionless governing equations formulated using stream function, vorticity and temperature have been solved by the finite difference method. The effects of the Rayleigh number, Ostrogradsky number, Nield number and nanoparticles volume fraction on nanofluid flow, heat and mass transfer have been analyzed. Findings It has been revealed that the dimensionless heat transfer coefficient at the fluid/solid matrix interface can be a very good control parameter for the convective flow and heat transfer intensity. The present results are original and new for the study of non-equilibrium natural convection in a differentially-heated nanofluid cavity partially filled with a porous medium. Originality/value The results of this paper are new and original with many practical applications of nanofluids in the modern industry.


Author(s):  
Alireza Rahimi ◽  
Aravindhan Surendar ◽  
Aygul Z. Ibatova ◽  
Abbas Kasaeipoor ◽  
Emad Hasani Malekshah

Purpose This paper aims to investigate the three-dimensional natural convection and entropy generation in the rectangular cuboid cavities included by chamfered triangular partition made by polypropylene. Design/methodology/approach The enclosure is filled by multi-walled carbon nanotubes (MWCNTs)-H2O nanofluid and air as two immiscible fluids. The finite volume approach is used for computation. The fluid flow and heat transfer are considered with combination of local entropy generation due to fluid friction and heat transfer. Moreover, a numerical method is developed based on three-dimensional solution of Navier–Stokes equations. Findings Effects of side ratio of triangular partitions (SR = 0.5, 1 and 2), Rayleigh number (103 < Ra < 105) and solid volume fraction (f = 0.002, 0.004 and 0.01 Vol.%) of nanofluid are investigated on both natural convection characteristic and volumetric entropy generation. The results show that the partitions can be a suitable method to control fluid flow and energy consumption, and three-dimensional solutions renders more accurate results. Originality/value The originality of this work is to study the three-dimensional natural convection and entropy generation of a stratified system.


2019 ◽  
Vol 29 (8) ◽  
pp. 2545-2565
Author(s):  
Safeer Hussain ◽  
Jian Liu ◽  
Lei Wang ◽  
Bengt Ake Sunden

Purpose The purpose of this paper is to enhance the heat transfer and thermal performance in the trailing edge region of the vane with vortex generators (VGs). Design/methodology/approach This numerical study presents the enhancement of thermal performance in the trailing part of a gas turbine blade. In the trailing part, generally, pin fins are used either in staggered or in-line arrangements to enhance the heat transfer. In this study, based on the idea from heat exchangers, pin fins are combined with VGs. A pair of VGs is embedded in the boundary layer upstream of each pin fin in the first row of the pin fin array having an in-line configuration. The effects of the VG angle relative to the streamwise direction and streamwise distance between the pin fin and VGs are investigated at various Reynolds numbers. Findings The results indicated that the endwall heat transfer is enhanced with the addition of VGs and the heat transfer from the surfaces of the pin fins. The level of heat transfer enhancement compared to the case without VGs is more significant at high Reynolds number. The surfaces of the VGs also show a significant amount of heat transfer. Study of the angle of the attack suggested that a high angle of attack is more appropriate for pin fin cooling enhancement whereas an intermediate gap between the VGs and pin fins shows considerable improvement of thermal performance compared to the small and large gaps. The phenomenon of heat transfer augmentation with the VGs is demonstrated by the flow field. It shows that the enhancement of heat transfer is governed by the mixing of the flow as a result of the interaction of vortices generated by the VGs and pin fins. Originality/value VGs are used to disturb the thermal boundary layer. It shows that heat transfer is augmented as a result of the interaction of vortices associated with VGs and pin fins.


Sign in / Sign up

Export Citation Format

Share Document