Modeling the sloshing problem in a rectangular tank with submerged incomplete baffles

2016 ◽  
Vol 26 (3/4) ◽  
pp. 722-744 ◽  
Author(s):  
Marcela A. Cruchaga ◽  
Carlos Ferrada ◽  
Nicolás Márquez ◽  
Sebastián Osses ◽  
Mario Storti ◽  
...  

Purpose – The present work is an experimental and numerical study of a sloshing problem including baffle effects. The purpose of this paper is to assess the numerical behavior of a Lagrangian technique to track free surface flows by comparison with experiments, to report experimental data for sloshing at different conditions and to evaluate the effectiveness of baffles in limiting the wave height and the wave propagation. Design/methodology/approach – Finite element simulations performed with a fixed mesh technique able to describe the free surface evolution are contrasted with experimental data. The experiments consist of an acrylic tank of rectangular section designed to attach baffles of different sizes at different distance from the bottom. The tank is filled with water and mounted on a shake table able to move under controlled horizontal motion. The free surface evolution is measured with ultrasonic sensors. The numerical results computed for different sloshing conditions are compared with the experimental data. Findings – The reported numerical results are in general in good agreement with the experiments. In particular, wave heights and frequencies response satisfactorily compared with the experimental data for the several cases analyzed during steady state forced sloshing and free sloshing. The effectiveness of the baffles increases near resonance conditions. From the set of experiments studied, the major reduction of the wave height was obtained when larger baffles were positioned closer to the water level at rest. Practical implications – Model validation: evaluation of the effectiveness of non-massive immersed baffles during sloshing. Originality/value – The value of the present work encompass the numerical and experimental study of the effect of immersed baffles during sloshing under different imposed conditions and the comparison of numerical results with the experimental data. Also, the results shown in the present work are a contribution to the understanding of the role in the analysis of the proposed problem of some specific aspects of the geometry and the imposed motion.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ran Bi ◽  
Shady Ali ◽  
Eric Savory ◽  
Chao Zhang

PurposeThis study aims (1) to numerically investigate the characteristics of a human cough jet in a quiescent environment, such as the variation with time of the velocity field, streamwise jet penetration and maximum jet width. Two different turbulence modelling approaches, the unsteady Reynolds-averaged Navier–Stokes (URANS) and large eddy simulation (LES), are used for comparison purposes. (2) To validate the numerical results with the experimental data.Design/methodology/approachTwo different approaches, the URANS and LES, are used to simulate a human cough jet flow. The numerical results for the velocity magnitude contours and the spatial average of the two-dimensional velocity magnitude over the corresponding particle image velocimetry (PIV) field of view are compared with the relevant PIV measurements. Similarly, the numerical results for the streamwise velocity component at the hot-wire probe location are compared with the hot-wire anemometry (HWA) measurements. Furthermore, the numerical results for the streamwise jet penetration are compared with the data from the previous experimental work.FindingsBased on the comparison with the URANS approach and the experimental data, the LES approach can predict the temporal development of a human cough jet reasonably well. In addition, the maximum width of the cough jet is found to grow practically linearly with time in the far-field, interrupted-jet stage, while the corresponding axial distance from the mouth of the jet front increases with time in an approximately quadratic manner.Originality/valueCurrently, no numerical study of human cough flow has been conducted using the LES approach due to the following challenges: (1) the computational cost is much higher than that of the URANS approach; (2) it is difficult to specify the turbulent fluctuations at the mouth for the cough jet properly; (3) it is necessary to define the appropriate conditions for the droplets to obtain statistically valid results. Therefore, this work fills this research gap.


2021 ◽  
Vol 31 (5) ◽  
pp. 1373-1395
Author(s):  
Iman Mazinani ◽  
Mohammad Mohsen Sarafraz ◽  
Zubaidah Ismail ◽  
Ahmad Mustafa Hashim ◽  
Mohammad Reza Safaei ◽  
...  

Purpose Two disastrous Tsunamis, one on the west coast of Sumatra Island, Indonesia, in 2004 and another in North East Japan in 2011, had seriously destroyed a large number of bridges. Thus, experimental tests in a wave flume and a fluid structure interaction (FSI) analysis were constructed to gain insight into tsunami bore force on coastal bridges. Design/methodology/approach Various wave heights and shallow water were used in the experiments and computational process. A 1:40 scaled concrete bridge model was placed in mild beach profile similar to a 24 × 1.5 × 2 m wave flume for the experimental investigation. An Arbitrary Lagrange Euler formulation for the propagation of tsunami solitary and bore waves by an FSI package of LS-DYNA on high-performance computing system was used to evaluate the experimental results. Findings The excellent agreement between experiments and computational simulation is shown in results. The results showed that the fully coupled FSI models could capture the tsunami wave force accurately for all ranges of wave heights and shallow depths. The effects of the overturning moment, horizontal, uplift and impact forces on a pier and deck of the bridge were evaluated in this research. Originality/value Photos and videos captured during the Indian Ocean tsunami in 2004 and the 2011 Japan tsunami showed solitary tsunami waves breaking offshore, along with an extremely turbulent tsunami-induced bore propagating toward shore with significantly higher velocity. Consequently, the outcomes of this current experimental and numerical study are highly relevant to the evaluation of tsunami bore forces on the coastal, over sea or river bridges. These experiments assessed tsunami wave forces on deck pier showing the complete response of the coastal bridge over water.


2012 ◽  
Vol 29 (8) ◽  
pp. 794-813 ◽  
Author(s):  
G. Shobeyri ◽  
M.H. Afshar

PurposeThe purpose of this paper is to propose an adaptive refinement strategy based on a posteriori error estimate for the efficient simulation of free surface flows using discrete least squares meshless (DLSM) method.Design/methodology/approachA pressure projection method is employed to discretize the governing equations of mass and momentum conservation in a Lagrangian form. The semi‐discretized equations are then discretized in space using the DLSM method, in which the sum of squared residual of the governing equations and their boundary conditions are minimized with respect to the unknown nodal parameters.FindingsSince the position of the free surface is of great significant in free surface problems, a posteriori error estimator which automatically associates higher error to the nodes near the free surface is proposed and used along with a node moving refinement strategy to simulate the free surface problems more efficiently. To test the ability and efficiency of the proposed adaptive simulation method, two test problems, namely dam break and evolution of a water bubble, are solved and the results are presented and compared to those of analytical and experimental results.Originality/valueError estimate and adaptive refinement have been mostly used in confined and steady‐state flow. Here in this paper, a new attempt has been made to use these concepts in moving boundary problem.


Water ◽  
2018 ◽  
Vol 10 (5) ◽  
pp. 638 ◽  
Author(s):  
Francesco Calomino ◽  
Giancarlo Alfonsi ◽  
Roberto Gaudio ◽  
Antonino D’Ippolito ◽  
Agostino Lauria ◽  
...  

1994 ◽  
Vol 356 ◽  
Author(s):  
Cheng-Hsin Chiu ◽  
Huajian Gao

AbstractA two-dimensional numerical simulation is performed to model the morphological evolution of a strained film growing heteroepitaxially on a substrate under simultaneous action of vapor deposition and surface diffusion. To facilitate numerical implementation, a continuum boundary layer model is proposed to account for the influence of film/substrate interface on the film growth pattern. Discussions are focused on the Stranski-Krastanow growth mode, although our model is capable of explaining Frank-van der Merwe and Volmer-Weber growth modes as well. Both first-order perturbation and numerical results are developed to demonstrate that the film surface tends to remain flat during the initial stage of growth and that surface roughening occurs once the film thickness exceeds a critical value, in consistency with experimentally observed patterns of S-K growth. Numerical results further show that, depending on the deposition rate, the surface evolution could lead to a steady state morphology, unstable cusp formation, or growing islands with flattened valleys.


Author(s):  
Nima Moradi ◽  
Tongming Zhou ◽  
Liang Cheng

The resonant behavior of the fluid trapped in the narrow gap between a floating LNG and an LNG carrier in a side-by-side offloading operation is investigated in this study employing a numerical wave flume. The wave flume is based on the finite volume solution of the Navier-Stokes equations to account for the viscous dissipation. The waveFoam toolbox, a modified version of the standard OpenFOAM multiphase flow solver interFoam developed by Jacobson et al (2011) has been used for the purpose of wave generation and relaxation inside the computational domain. This method has a quite high efficiency as it takes advantage of the potential flow theory for wave generation purpose and the viscous flow theory for inside the wave tank, respectively. The volume of fluid (VOF) method first introduced by Hirt and Nichols (1981) is used to capture the free surface oscillations at the air and water interface. Water waves are generated at a reasonable distance from the inlet boundary and two rectangular relaxation zones at the inlet and outlet boundaries of the domain have been implemented to suppress wave reflection at the outer boundaries as well as waves reflected internally in the computational domain. The influence of incident wave frequency on resonance wave height and frequency is examined. Numerical results of free surface evolution at different incident wave frequency seem to agree well with the experimental results of Saitoh et al (2006) and numerical results of Lu et al (2008). In order to justify the effect of bilge keels on flow separation at the bottom corner of the ship, four different corner configurations have been investigated and compared to the base sharp edged case. It is observed that the magnitude of the free surface elevation at the resonance frequency increases significantly by about 10 times the incoming wave height while the peak of resonant frequency curves shifts to higher frequencies in the higher curvature modes compared with the base case.


Author(s):  
Shengnan Liu ◽  
Muk Chen Ong ◽  
Charlotte Obhrai ◽  
Sopheak Seng

Two-dimensional (2D) numerical simulations have been performed using OpenFOAM (an open source CFD software package [1]) and waves2Foam (an OpenFOAM based add-on library for wave generations and absorption [2]) to investigate free surface waves past one fixed horizontally semi-submerged cylinder. The 2-D simulations are carried out by solving Navier-Stokes equations which are discretized based on finite volume method (FVM). Volume of Fluid (VOF) method is employed to capture the free surface in the numerical wave tank. Validation studies have been performed by comparing the numerical results of Stokes first-order wave past a semi-submerged circular cylinder with the published experimental data at different incident wave properties. The numerical results are in good agreement with the experimental data. Subsequently, regular and irregular waves past semi-submerged cylinder at different wave heights and the wave lengths are computed numerically to investigate the effect of the wave height and wave length on wave-structure interaction. The numerical results for irregular waves are compared with those induced by regular waves.


Author(s):  
Morteza Anbarsooz ◽  
Ali Faramarzi ◽  
Amirmahdi Ghasemi

In the current study, a fully nonlinear two-dimensional numerical wave tank is developed using the commercial CFD software, Ansys Fluent 15.0, in order to study the absorption characteristics of an OWC at linear and highly nonlinear steep waves. The two-phase Volume-Of-Fluid (VOF) method is employed to predict the water free surface evolution. The numerical results are first validated against the available analytical data in the literature. The good agreement between the numerical results and those of analytics, revealed the capability of the developed numerical tank to study the performance of the OWC. Next, the simulations are performed for strongly nonlinear waves, up to the wave steepness of 0.069 (H/L=0.069), where H is the wave height and L is the wave length. The optimum pneumatic damping of the air turbine at such strongly steep and nonlinear waves is determined. Results show that the absorption efficiency of the OWC decreases considerably as the wave height increases. Moreover, the maximum wave energy absorption efficiency for the highly nonlinear waves occurs at a pneumatic damping coefficient lower than that of the linear theory.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 126
Author(s):  
Rafik Absi

The flow in rivers is turbulent. The main parameter related to turbulence in rivers is the eddy viscosity, which is used to model a turbulent flow and is involved in the determination of both velocities and sediment concentrations. A well-known and largely used vertical distribution of eddy viscosity in free surface flows (open channels and rivers) is given by the parabolic profile that is based on the logarithmic velocity profile assumption and is valid therefore only in the log-law layer. It was improved thanks to the log-wake law velocity profile. These two eddy viscosities are obtained from velocity profiles, and the main shortcoming of the log-wake profile is the empirical Coles’ parameter. A more rigorous and reliable analytical eddy viscosity model is needed. In this study, we present two analytical eddy viscosity models based on the concepts of velocity and length scales, which are related to the exponentially decreasing turbulent kinetic energy (TKE) function and mixing length, namely, (1) the exponential-type profile of eddy viscosity and (2) an eddy viscosity based on an extension of von Karman’s similarity hypothesis. The eddy viscosity from the second model is -independent, while the eddy viscosity from the first model is -dependent (where is the friction Reynolds number). The proposed analytical models were validated through computation of velocity profiles, obtained from the resolution of the momentum equation and comparisons to experimental data. With an additional correction function related to the damping effect of turbulence near the free surface, both models are similar to the log-wake-modified eddy viscosity profile but with different values of the Coles’ parameter, i.e., for the first model and for the second model. These values are similar to those found in open-channel flow experiments. This provides an explanation about the accuracy of these two analytical models in the outer part of free surface flows. For large values of ( > 2000), the first model becomes independent, and the two coefficients reach asymptotic values. Finally, the two proposed eddy viscosity models are validated by experimental data of eddy viscosity.


Author(s):  
Nguyen Tuan Trung ◽  
Pham Thanh Tung

The paper presents a numerical study on the effects of opening size and location on punching shear resistance of flat slabs without drop panels and shear reinforcement using ABAQUS. The study proposes an ABAQUS model that is enable to predict the punching shear resistance of flat slabs with openings. The model is validated well with the experimental data in literature. Using the validated numerical model, the effects of opening size and location on the punching shear resistance of flat slabs are then investigated, and the numerical results are compared with those predicted by ACI 318-19 and TCVN 5574:2018. The comparison between experimental and numerical results shows that the ABAQUS model is reliable. The punching shear resistances calculated by ACI 318-19 and TCVN 5574:2018 with different opening sizes and locations are agreed well to each other, since the design principles between two codes now are similar.


Sign in / Sign up

Export Citation Format

Share Document