Multi-scale pulsatile CFD modeling of thrombus transport in a patient-specific LVAD implantation

2017 ◽  
Vol 27 (5) ◽  
pp. 1022-1039 ◽  
Author(s):  
Ray O. Prather ◽  
Alain Kassab ◽  
Marcus William Ni ◽  
Eduardo Divo ◽  
Ricardo Argueta-Morales ◽  
...  

Purpose Predictive models implemented in medical procedures can potentially bring great benefit to patients and represent a step forward in targeted treatments based on a patient’s physiological condition. It is the purpose of this paper to outline such a model. Design/methodology/approach A multi-scale 0D-3D model based on patient specific geometry combines a 0-dimensional lumped parameter model (LPM) with a 3D computational fluid dynamics (CFD) analysis coupled in time, to obtain physiologically viable flow parameters. Findings A comparison of physiological data gathered from literature with flow-field measurements in this model shows the viability of this method in relation to potential predictions of pathological flows repercussions and candidate treatments. Research limitations/implications A limitation of the model is the absence of compliance in the walls in the CFD fluid domain; however, compliance of the peripheral vasculature is accounted for by the LPM. Currently, an attempt is in progress to extend this multi-scale model to account for the fluid-structure interaction of the ventricular assist device vasculature and hemodynamics. Originality/value This work reports on a predictive pulsatile flow model that can be used to investigate surgical alternatives to reduce strokes in LVADs.

2017 ◽  
Vol 17 (01) ◽  
pp. 1750017 ◽  
Author(s):  
WENXIN WANG ◽  
YOUJUN LIU ◽  
XI ZHAO ◽  
JINSHENG XIE ◽  
AIKE QIAO

Background and aims: Sequential grafting is one of the common coronary artery bypass grafting (CABG) surgery. But the influence of the sequential grafting position on hemodynamics and the graft patency is still unclear. Materials and methods: The zero-dimensional/three-dimensional (0D/3D) coupling method was used to finalize the multi-scale simulation of two different sequential grafting models. First, a patient-specific 3D model was reconstructed based on coronary computed tomography angiography (CCTA) images. Two different sequential grafts were implemented on this patient-specific 3D model by using virtual surgery. Thus, two different postoperative 3D models were built. Then, a lumped parameter model (LPM; 0D) was built based on the patient physiological data to simulate the cardiovascular system. Finally, the 0D/3D coupling method was used to perform the numerical simulation by coupling a 0D LPM of the cardiovascular system and the patient-specific 3D models. Moreover, the long-term patency of these two different sequential grafts was discussed in this paper. Results: The coronary flow rate and the graft flow were calculated and illustrated. The instantaneous wave-free ratio (iFR) were calculated. Postoperative iFR values increase to over 0.90 for both sequential grafts. Some hemodynamics parameters were also illustrated, such as wall shear stress (WSS), oscillatory shear index (OSI). The area of low WSS in Model 1 was much less than that in Model 2. Two regions of high OSI exist in Model 2, while only one in Model 1. Conclusions: No significant differences exist on the short-term outcomes of two models. But the long-term patency of Model 2 was worse. The Model 1 may enhance long-term patency of grafting and should be priority when the sequential grafting need to be carried out.


2013 ◽  
Vol 3 (2) ◽  
pp. 20120057 ◽  
Author(s):  
K. S. Burrowes ◽  
J. De Backer ◽  
R. Smallwood ◽  
P. J. Sterk ◽  
I. Gut ◽  
...  

The respiratory system comprises several scales of biological complexity: the genes, cells and tissues that work in concert to generate resultant function. Malfunctions of the structure or function of components at any spatial scale can result in diseases, to the detriment of gas exchange, right heart function and patient quality of life. Vast amounts of data emerge from studies across each of the biological scales; however, the question remains: how can we integrate and interpret these data in a meaningful way? Respiratory disease presents a huge health and economic burden, with the diseases asthma and chronic obstructive pulmonary disease (COPD) affecting over 500 million people worldwide. Current therapies are inadequate owing to our incomplete understanding of the disease pathophysiology and our lack of recognition of the enormous disease heterogeneity: we need to characterize this heterogeneity on a patient-specific basis to advance healthcare. In an effort to achieve this goal, the AirPROM consortium ( Air way disease Pr edicting O utcomes through patient-specific computational M odelling) brings together a multi-disciplinary team and a wealth of clinical data. Together we are developing an integrated multi-scale model of the airways in order to unravel the complex pathophysiological mechanisms occurring in the diseases asthma and COPD.


2017 ◽  
Vol 34 (3) ◽  
pp. 754-780 ◽  
Author(s):  
Rafael Castro-Triguero ◽  
Enrique Garcia-Macias ◽  
Erick Saavedra Flores ◽  
M.I. Friswell ◽  
Rafael Gallego

Purpose The purpose of this paper is to capture the actual structural behavior of the longest timber footbridge in Spain by means of a multi-scale model updating approach in conjunction with ambient vibration tests. Design/methodology/approach In a first stage, a numerical pre-test analysis of the full bridge is performed, using standard beam-type finite elements with isotropic material properties. This approach offers a first structural model in which optimal sensor placement (OSP) methodologies are applied to improve the system identification process. In particular, the effective independence (EFI) method is used to determine the optimal locations of a set of sensors. Ambient vibration tests are conducted to determine experimentally the modal characteristics of the structure. The identified modal parameters are compared with those values obtained from this preliminary model. To improve the accuracy of the numerical predictions, the material response is modeled by means of a homogenization-based multi-scale computational approach. In a second stage, the structure is modeled by means of three-dimensional solid elements with the above material definition, capturing realistically the full orthotropic mechanical properties of wood. A genetic algorithm (GA) technique is adopted to calibrate the micromechanical parameters which are either not well-known or susceptible to considerable variations when measured experimentally. Findings An overall good agreement is found between the results of the updated numerical simulations and the corresponding experimental measurements. The longitudinal and transverse Young's moduli, sliding and rolling shear moduli, density and natural frequencies are computed by the present approach. The obtained results reveal the potential predictive capabilities of the present GA/multi-scale/experimental approach to capture accurately the actual behavior of complex materials and structures. Originality/value The uniqueness and importance of this structure leads to an intensive study of its structural behavior. Ambient vibration tests are carried out under environmental excitation. Extraction of modal parameters is obtained from output-only experimental data. The EFI methodology is applied for the OSP on a large-scale structure. Information coming from several length scales, from sub-micrometer dimensions to macroscopic scales, is included in the material definition. The strong differences found between the stiffness along the longitudinal and transverse directions of wood lumbers are incorporated in the structural model. A multi-scale model updating approach is carried out by means of a GA technique to calibrate the micromechanical parameters which are either not well-known or susceptible to considerable variations when measured experimentally.


Author(s):  
A. Baretta ◽  
C. Corsini ◽  
W. Yang ◽  
I. E. Vignon-Clementel ◽  
A. L. Marsden ◽  
...  

The objective of this work is to perform a virtual planning of surgical repairs in patients with congenital heart diseases—to test the predictive capability of a closed-loop multi-scale model. As a first step, we reproduced the pre-operative state of a specific patient with a univentricular circulation and a bidirectional cavopulmonary anastomosis (BCPA), starting from the patient's clinical data. Namely, by adopting a closed-loop multi-scale approach, the boundary conditions at the inlet and outlet sections of the three-dimensional model were automatically calculated by a lumped parameter network. Successively, we simulated three alternative surgical designs of the total cavopulmonary connection (TCPC). In particular, a T-junction of the venae cavae to the pulmonary arteries (T-TCPC), a design with an offset between the venae cavae (O-TCPC) and a Y-graft design (Y-TCPC) were compared. A multi-scale closed-loop model consisting of a lumped parameter network representing the whole circulation and a patient-specific three-dimensional finite volume model of the BCPA with detailed pulmonary anatomy was built. The three TCPC alternatives were investigated in terms of energetics and haemodynamics. Effects of exercise were also investigated. Results showed that the pre-operative caval flows should not be used as boundary conditions in post-operative simulations owing to changes in the flow waveforms post-operatively. The multi-scale approach is a possible solution to overcome this incongruence. Power losses of the Y-TCPC were lower than all other TCPC models both at rest and under exercise conditions and it distributed the inferior vena cava flow evenly to both lungs. Further work is needed to correlate results from these simulations with clinical outcomes.


2014 ◽  
Vol 31 (3) ◽  
pp. 584-620 ◽  
Author(s):  
Weiwei Zhang ◽  
Xianlong Jin ◽  
Zhihao Yang

Purpose – The great magnitude differences between the integral tunnel and its structure details make it impossible to numerically model and analyze the global and local seismic behavior of large-scale shield tunnels using a unified spatial scale, even with the help of supercomputers. The paper aims to present a combined equivalent & multi-scale simulation method, by which the tunnel's major mechanical properties under seismic loads can be represented by the equivalent model, and the seismic responses of the interested details can be studied efficiently by the coupled multi-scale model. Design/methodology/approach – The nominal orthotropic material constants of the equivalent tunnel model are inversely determined by fitting the modal characteristics of the equivalent model with the corresponding segmental lining model. The critical sections are selected by comprehensive analyzing of the integral compression/extension and bending loads in the equivalent lining under the seismic shaking and the coupled multi-scale model containing the details of interest is solved by the mixed time explicit integration algorithm. Findings – The combined equivalent & multi-scale simulation method is an effective and efficient way for seismic analyses of large-scale tunnels. The response of each flexible joint is related to its polar location on the lining ring, and the mixed time integration method can speed-up the calculation process for hybrid FE model with great differences in element sizes. Originality/value – The orthotropic equivalent assumption is, to the best of the authors’ knowledge, for the first time, used in the 3D simulation of the shield tunnel lining, representing the rigidity discrepancies caused by the structural property.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1247
Author(s):  
Tobias Gerach ◽  
Steffen Schuler ◽  
Jonathan Fröhlich ◽  
Laura Lindner ◽  
Ekaterina Kovacheva ◽  
...  

Mathematical models of the human heart are evolving to become a cornerstone of precision medicine and support clinical decision making by providing a powerful tool to understand the mechanisms underlying pathophysiological conditions. In this study, we present a detailed mathematical description of a fully coupled multi-scale model of the human heart, including electrophysiology, mechanics, and a closed-loop model of circulation. State-of-the-art models based on human physiology are used to describe membrane kinetics, excitation-contraction coupling and active tension generation in the atria and the ventricles. Furthermore, we highlight ways to adapt this framework to patient specific measurements to build digital twins. The validity of the model is demonstrated through simulations on a personalized whole heart geometry based on magnetic resonance imaging data of a healthy volunteer. Additionally, the fully coupled model was employed to evaluate the effects of a typical atrial ablation scar on the cardiovascular system. With this work, we provide an adaptable multi-scale model that allows a comprehensive personalization from ion channels to the organ level enabling digital twin modeling.


2020 ◽  
Vol 64 (2) ◽  
pp. 20506-1-20506-7
Author(s):  
Min Zhu ◽  
Rongfu Zhang ◽  
Pei Ma ◽  
Xuedian Zhang ◽  
Qi Guo

Abstract Three-dimensional (3D) reconstruction is extensively used in microscopic applications. Reducing excessive error points and achieving accurate matching of weak texture regions have been the classical challenges for 3D microscopic vision. A Multi-ST algorithm was proposed to improve matching accuracy. The process is performed in two main stages: scaled microscopic images and regularized cost aggregation. First, microscopic image pairs with different scales were extracted according to the Gaussian pyramid criterion. Second, a novel cost aggregation approach based on the regularized multi-scale model was implemented into all scales to obtain the final cost. To evaluate the performances of the proposed Multi-ST algorithm and compare different algorithms, seven groups of images from the Middlebury dataset and four groups of experimental images obtained by a binocular microscopic system were analyzed. Disparity maps and reconstruction maps generated by the proposed approach contained more information and fewer outliers or artifacts. Furthermore, 3D reconstruction of the plug gauges using the Multi-ST algorithm showed that the error was less than 0.025 mm.


Sign in / Sign up

Export Citation Format

Share Document