Effect of blade surface roughness on condensation process in a stator cascade

2019 ◽  
Vol 30 (8) ◽  
pp. 4067-4081
Author(s):  
Xu Han ◽  
Xiangyu Liu ◽  
Yunyun Yuan ◽  
Zhonghe Han

Purpose The flow state of wet steam will affect the thermodynamic and aerodynamic characteristics of steam turbine. The purpose of this study is to effectively control the wetness losses caused by wet steam condensation, and hence a cascade of 600 MW steam turbine was taken as the research object. Design/methodology/approach The influence of blade surface roughness on the condensation characteristics was analyzed, and the dehumidification mechanism and wetness control effect were obtained. Findings With the increase of blade surface roughness, the peak nucleation rate decreases gradually. According to the Mach number distribution on the blade surface, there is a sensitive region for the influence of roughness on the aerodynamic performance of cascade. The sensitive region of nucleation rate roughness should be between 50 and 150 µm. Originality/value The increase of blade surface roughness will increase the dynamic loss in cascade, but it can reduce the thermodynamic loss caused by condensation to a certain extent.

Author(s):  
Pascal Post ◽  
Benjamin Winhart ◽  
Francesca di Mare

Abstract The influence of turbulence modeling approach by means of (U)RANS and LES on the overall modeling of turbulent condensing wet steam flows is investigated using the example of a low-pressure steam turbine cascade. For an accurate numerical treatment of turbulence in presence of shock waves, necessary for predictive scale-resolving computations, a hybrid flux treatment switches between a baseline non-dissipative central flux in energy consistent split form and a shock-capturing upwind flux in shocked regions based on a shock sensor. Condensation is realized by a mono-dispersed Euler-Euler source term model, the equation of state by the highly efficient and accurate SBTL tabulation. The numerical treatment is validated with a decay of homogeneous isotropic turbulence test case containing eddy shocklets. The measurement results of the condensing wet steam cascade are overall much better matched by LES compared to RANS and URANS. Analysis shows that the LES is much better able to account for the inherently unsteady nature of the spontaneous condensation process and its interaction with the trailing edge shock wave structure.


2018 ◽  
Vol 28 (10) ◽  
pp. 2378-2403 ◽  
Author(s):  
Xu Han ◽  
Zhonghe Han ◽  
Wei Zeng ◽  
Peng Li ◽  
Jiangbo Qian

Purpose The purpose of this paper is to study the condensation flow of wet steam in the last stage of a steam turbine and to obtain the distribution of condensation parameters such as nucleation rate, Mach number and wetness. Design/methodology/approach Because of the sensitivity of the condensation parameter distribution, a double fluid numerical model and a realizable k-ε-kd turbulence model were applied in this study, and the numerical solution for the non-equilibrium condensation flow is provided. Findings The simulation results are consistent with the experimental results of the Bakhtar test. The calculation results indicate that the degree of departure from saturation has a significant impact on the wet steam transonic condensation flow. When the inlet steam deviates from the saturation state, shock wave interference and vortex mixing also have a great influence on the distribution of water droplets. Originality/value The research results can provide reference for steam turbine wetness losses evaluation and flow passage structure optimization design.


2019 ◽  
Vol 29 (12) ◽  
pp. 4531-4548 ◽  
Author(s):  
Xu Han ◽  
Wei Zeng ◽  
Zhonghe Han

Purpose The purpose of this study is to improved the efficiency of condensing steam turbines by legitimately reforming the flow structure. It is of great significance to study the condensation flow characteristics of wet steam for optimizing the operation of condensing steam turbines. Design/methodology/approach A two-fluid model was used to study the wet steam flow in a stator cascade. The effects of the inlet temperature and pressure drop on the cascade performance were analyzed. On this basis, endwall protrusion models were set up at varied axial position on the pressure surface to evaluate the wetness control and loss under different design conditions for cascade optimization. Findings The analysis indicates that increasing the inlet temperature or decreasing the pressure drop can effectively control the steam wetness but increase the droplet radius. The increasing inlet temperature can delay the condensation and alleviate the deterioration of the aerodynamic performance of cascades. The non-axisymmetric endwall can significantly affect the distribution of steam parameters below its height and slightly reduce the droplet radius. Compared with the original stator cascade, the optimum design conditions reduce the steam wetness by 8.07 per cent and the total pressure loss by 6.91 per cent below a 20 per cent blade height. Originality/value These research results can serve as a reference for condensing steam turbine wetness losses evaluation and flow passage optimization design.


Author(s):  
Pascal Post ◽  
Benjamin Winhart ◽  
Francesca di Mare

Abstract The influence of turbulence modeling approach by means of (U)RANS and LES on the overall modeling of turbulent condensing wet steam flows is investigated using the example of a low-pressure steam turbine cascade. For an accurate numerical treatment of turbulence in presence of shock waves, necessary for predictive scale-resolving computations, a hybrid flux treatment switches between a baseline non-dissipative central flux in energy consistent split form and a shock-capturing upwind flux in shocked regions based on a shock sensor. Condensation is realized by a mono-dispersed Euler-Euler source term model, the equation of state by the highly efficient and accurate SBTL tabulation. The numerical treatment is validated with a decay of homogeneous isotropic turbulence test case containing eddy shocklets. The measurement results of the condensing wet steam cascade are overall much better matched by LES compared to RANS and URANS. Analysis shows that the LES is much better able to account for the inherently unsteady nature of the spontaneous condensation process and its interaction with the trailing edge shock wave structure.


2021 ◽  
Vol 24 (1) ◽  
pp. 53-58
Author(s):  
Anatolii O. Tarelin ◽  
◽  
Viktor L. Shvetsov ◽  
Volodymyr H. Mykhailenko ◽  
Andrii V. Nechaiev ◽  
...  

This paper is devoted to the electrochemical and chemical aspects of the erosion-corrosion destruction of the surface layer of a wet-steam turbine rotor blade under the influence of an electrified working fluid. It considers a hypothesis about a complex mechanochemical-electrochemical mechanism of chromium and iron wash-out from the surface layer of the rotor blade metal during the destruction of the oxide film under the influence of a high-speed wet steam flow. Various versions of this process are analyzed for positive, negative, quasi-neutral, and neutral electrifications of wet steam. The possibility to hydrogenate the surfaces of rotor blades under the influence of negatively-charged droplets is shown theoretically. The damage to the blades in this case is similar to that from anodic etching. It is also shown that the process of blade surface hydrogenation takes place in any case both for electrically-charged droplets and for neutral ones. However, in the case of neutral droplets, the intensity of the process is insignificant. An experimental study was carried out for the erosion-damaged surface of a last-stage rotor blade from of the BK-50 LMP turbine that had exhausted its lifetime. The quantitative content of chromium was determined in the steel sample cut out from the blade. A decrease in chromium content in the erosion-damaged blade surface layer was found. To test the hypothesis about the similarity between the process of anodic electro-etching and the process of surface destruction under the influence of negatively-charged droplets, an electrochemical experiment was carried out on a model sample of 20X13 chromium steel. The reliefs of the damaged areas on the model sample after anodic etching and on the observable blade in the zone of exposure to negatively-charged droplets are shown to be similar. The experimental studies have confirmed the presence of a complex mechanochemical-electrochemical process of blade destruction. On the basis of the data obtained, recommendations for extending the useful life of turbine blades are formulated.


Author(s):  
G. J. Parker ◽  
E. Bruen

This paper describes an investigation into the behaviour of drops which impinge upon dry and wet surfaces. This is of particular interest in the context of the wet steam turbine. Two approaches have been made in the studies; these are: (1) Drops were made to impinge normally on to various types of dry, stationary surfaces. The drops were in the size range 300–1500 μm diameter with velocities of 2–9 m/s. (2) Drops were made to impinge on to surfaces moving with considerable velocity at right angles to the motion of the drop. Surface velocities ranged up to 45 m/s. The latter study is of direct interest for the splashing of drops on turbine casings at small glancing angles, as occurs near drainage belts. Analysis of the mechanisms involved is made from the records of high-speed ciné photography.


2015 ◽  
Vol 67 (2) ◽  
pp. 172-180 ◽  
Author(s):  
Mumin Sahin ◽  
Cenk Misirli ◽  
Dervis Özkan

Purpose – The purpose of this paper is to examine mechanical and metallurgical properties of AlTiN- and TiN-coates high-speed steel (HSS) materials in detail. Design/methodology/approach – In this study, HSS steel parts have been processed through machining and have been coated with AlTiN and TiN on physical vapour deposition workbench at approximately 6,500°C for 4 hours. Tensile strength, fatigue strength, hardness tests for AlTiN- and TiN-coated HSS samples have been performed; moreover, energy dispersive X-ray spectroscopy and X-ray diffraction analysis and microstructure analysis have been made by scanning electron microscopy. The obtained results have been compared with uncoated HSS components. Findings – It was found that tensile strength of TiAlN- and TiN-coated HSS parts is higher than that of uncoated HSS parts. Highest tensile strength has been obtained from TiN-coated HSS parts. Number of cycles for failure of TiAlN- and TiN-coated HSS parts is higher than that for HSS parts. Particularly TiN-coated HSS parts have the most valuable fatigue results. However, surface roughness of fatigue samples may cause notch effect. For this reason, surface roughness of coated HSS parts is compared with that of uncoated ones. While the average surface roughness (Ra) of the uncoated samples was in the range of 0.40 μm, that of the AlTiN- and TiN-coated samples was in the range of 0.60 and 0.80 μm, respectively. Research limitations/implications – It would be interesting to search different coatings for cutting tools. It could be the good idea for future work to concentrate on wear properties of tool materials. Practical implications – The detailed mechanical and metallurgical results can be used to assess the AlTiN and TiN coating applications in HSS materials. Originality/value – This paper provides information on mechanical and metallurgical behaviour of AlTiN- and TiN-coated HSS materials and offers practical help for researchers and scientists working in the coating area.


2002 ◽  
Vol 216 (1-3) ◽  
pp. 113-119 ◽  
Author(s):  
Wageeh Sidrak Bassel ◽  
Arivaldo Vicente Gomes

2017 ◽  
Vol 8 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Kankan Ji ◽  
Xingquan Zhang ◽  
Shubao Yang ◽  
Liping Shi ◽  
Shiyi Wang ◽  
...  

Purpose The purpose of this paper is to evaluate surface integrity of quenched steel 1045 ground drily by the brazed cubic boron nitride (CBN) grinding wheel and the black SiC wheel, respectively. Surface integrity, including surface roughness, sub-surface hardness, residual stresses and surface morphology, was investigated in detail, and the surface quality of samples ground by two grinding wheels was compared. Design/methodology/approach In the present work, surface integrity of quenched steel 1045 machined by the CBN grinding wheel and the SiC wheel was investigated systematically. All the specimens were machined with a single pass in the down-cutting mode of dry condition. Surface morphology of the ground specimen was observed by using OLYMPUS BX51M optical microscopy. Surface roughness of seven points was measured by using a surface roughness tester at a cut-off length of 1.8 mm and the measurement traces were perpendicular to the grinding direction. Sub-surface micro-hardness was measured by using HVS-1000 digital micro-hardness tester after the cross-section surface was polished. The residual stress was tested by using X-350A X-ray stress analyzer. Findings When the cut depth is increased from 0.01 to 0.07 mm, the steel surface machined by the CBN wheel remains clear grinding mark, lower roughness, higher micro-hardness and higher magnitude of compressive stress and fine microstructure, while the surface machined by the SiC grinding wheel becomes worse with increasing of cut depth. The value of micro-hardness decreases, and the surface roughness increases, and the surface compressive stress turns into tensile stress. Some micro-cracks and voids occur when the sample is processed by the SiC grinding wheel with cut depth 0.07 mm. Originality/value In this paper, the specimens of quenched steel 1045 were machined by the CBN grinding wheel and the SiC wheel with various cutting depths. The processing quality resulted from the CBN grinding wheel is better than that resulted from the SiC grinding wheel.


1976 ◽  
Vol 98 (3) ◽  
pp. 573-577 ◽  
Author(s):  
J. Krzyz˙anowski ◽  
B. Weigle

In a series of experiments aimed at the visualization of the wet steam flow in the exhaust part of a 200 MW condensing steam turbine a set of periscopes and light sources was used. The aim of the experiment was: 1 – The investigation of the liquid-phase flow over the last stage stator blading of the turbine mentioned. 2 – The investigation of the gaseous-phase flow through the last stage blading at full and part load. The first part of the program partially failed due to the opaqueness of the wet steam atmosphere for the turbine load higher than 10–20 MW. The detailed experimental conditions will be described. An assessment of the primary droplet size will also be given. The preliminary results of the second part of the program will be outlined. The advantages and disadvantages of the equipment used will be discussed.


Sign in / Sign up

Export Citation Format

Share Document