Double-faced shading effect based on two wefts full-backed structure for traditional weft-backed woven fabrics

2019 ◽  
Vol 32 (2) ◽  
pp. 231-243
Author(s):  
Linlin Bai ◽  
Jiu Zhou

Purpose The purpose of this paper, on innovative design of traditional weft-backed woven fabric, is to investigate a design principle and method for full-backed structure with double-faced shading effect to realize two types of double-faced shading effects for traditional weft-backed fabric that are impossible to be realized under plane design mode. In addition, the study on the color rendering law is conducive to the design application, and the effectiveness of the design method has been verified by the design practices. Design/methodology/approach This paper presents a design method for full-backed structure with two shaded weave databases (SWDs) by selecting two primary weaves (PWs), establishing the corresponding SWDs, selecting the proper compound structures for database of full-backed structure with double-faced shading effect. Color card fabric with 544 specimens is produced and their color values are measured, their color difference and variance are analyzed to evaluate the color rendering characteristics. Finally, double-faced weft-backed fabrics are produced under layered-combination design mode to verify the practicality of full-backed structure with double-faced shading effect. Findings Weft-backed woven fabrics with “SPDC” (same pattern and different color) and “DPDC” (different pattern and different color) shading effects can be produced using full-backed structure with double-faced shading effect. The color expression is extremely enhanced (136 compound structures on one side for one color weft). In the shading process, two sets of wefts do not affect each other, and stable and ideal color shading effect with high color purity can be expressed according to the analyses on the L* (lightness) values, color purity, color differences (0.47–3.20) and variance (0.25–1.21) of the color card fabric. Originality/value Breaking through the structural limitations and achieving the double-faced shading effects that cannot be expressed in plane design mode. The research on two weft-backed fabric with the most basic weft-backed structure provides not only a theoretical base for further study on weft-backed structures, but also some references for structure innovation design of traditional weft-backed woven fabrics.

2019 ◽  
Vol 23 (1) ◽  
pp. 58-70
Author(s):  
Paniz Khosravani ◽  
Nazanin Ezazshahabi ◽  
Masoud Latifi

Purpose This paper aims to study the optical properties of woven fabrics. Design/methodology/approach The current study was carried out to objectively evaluate the luster of a group of woven fabrics with different weave structures and weft densities, with the aid of a goniophotometer. The results obtained from the objective luster measurement were validated by a set of pair comparison subjective tests using Thurstone’s law of comparative judgment. Findings The proper correlation with the R2 value of more than 0.96, between subjective and objective tests, confirmed the reliability and accordance of objective results with the human perception of luster. Statistical analysis of the luster results clarified that the effect of fabric structural parameters such as weave structure and weft density are significant at the confidence range of 95 per cent. The highest luster index was achieved for the twill 3/1 weave structure and the lowest luster belonged to the plain pattern. In addition, an increase in the density of the fabric leads to better luster. Moreover, it was concluded that the surface roughness affects the luster. A rise in the roughness value of the woven fabric causes reduction in its luster property. Originality/value Optical properties of woven fabrics, which are mainly attributed through the measurement of luster, are important for qualifying the aesthetic characteristics of the fabrics with various weave structures. Bearing in mind the influence of fabric surface properties on the aesthetic features of cloths, obtaining information in this field is a guide for selecting the suitable fabric for various end uses.


2018 ◽  
Vol 22 (3) ◽  
pp. 260-270 ◽  
Author(s):  
Shariful Islam ◽  
Shaikh Md. Mominul Alam ◽  
Shilpi Akter

Purpose The purpose of this paper is to facilitate the production of cotton spandex woven fabric with some user-friendly properties like wearer comfort, super stretch and elasticity. The findings could contribute to ease spandex production and to optimize its property of elasticity. Stretch or a super stretch property is generally desirable, as it can increase the comfort level of those who wear it. In this experiment, the difficulties which were identified while manufacturing cotton spandex woven fabric resolved after identification. Design/methodology/approach In this experiment, three types of cotton spandex woven fabrics, with different composition and constructions, were used to find out their elastic properties. Temperature ranging from 160°C to 200°C with the machine speed of 20 to 26 MPM (meter per minute) was applied with an adjusted industrial setting with the facilities of a stenter machine to optimize the properties of cotton spandex woven fabric. Findings The findings establish that the temperature treatment closely compacted the elastic portions with cotton fibers, giving stability to the spandex yarn, which as a result, influenced cotton spandex woven fabric’s elastic properties, namely, stretch, growth and recovery. The consequences of temperature on cotton spandex yarns were assessed using a microscope, and the results were subsequently analyzed. Research limitations/implications Because of the poor facilities in testing laboratory, only few tests with microscopic evaluation were conducted to assess the elastic performances of cotton spandex woven fabric. Practical implications It is a practice-based research, and the findings could be beneficial to personnel in the textile industry, who are responsible for the manufacturing of cotton spandex woven fabric. Social implications This research could enhance the wearer’s satisfaction, with some comfort elastic properties, which can have a positive influence over spandex clothing industries. Originality/value This research establishes that heat setting had a progressive influence on the production of cotton spandex woven fabric and for the optimization of its elastic performances. This research opens a possible way for scholars to further study in this field.


2017 ◽  
Vol 21 (2) ◽  
pp. 111-133 ◽  
Author(s):  
Arunangshu Mukhopadhyay ◽  
Vinay Kumar Midha ◽  
Nemai Chandra Ray

Purpose This study aims to optimize the parametric combination of injected slub yarn to achieve least abrasive damage on fabrics produced from it. Design/methodology/approach Single base injected slub yarn structural parameters, vis-à-vis slub length, slub thickness and slub frequency, were varied during preparation of yarn samples under this research work. A total of 17 yarn samples were produced according to the Box and Bhenken design of the experiment. Subsequently knitted and woven (using injected slub yarns in the weft only) fabric samples were prepared from these yarns. Yarn and fabric samples were abraded with standard instruments to see the impact of yarn structural parameters on abrasive damage of fabric in terms of fabric mass loss and appearance deterioration. From the test results, empirical models relating to slub parameters and fabric abrasion behavior were developed through a backward elimination regression approach. Subsequently, a set of optimal parametric combinations was derived with multi-objective evolutionary algorithms by using MATLAB software. This was followed by ranking all optimal solutions through technique for order preference by similarity to idle solution (TOPSIS) score analysis. Findings The injected slub yarn’s structural parameters have a strong influence on the abrasive damage of knitted and woven fabric. It is seen that the best suitable parametric combination of slub parameters for achieving the least abrasive damage is not the same for knitted and woven fabric. Practical implications The spinner can explore this concept to find out the best suitable parametric combination during pattern making of injected slub yarn through MATLAB solution followed by TOPSIS score analysis based on their priority of criteria level to ensure better abrasion behavior of fabric produced. Originality/value Optimization of parametric combination of injected slub yarns will help to ensure production of fabric with most resistance to abrasion for specific applications. The studies showed that the optimal solution for woven and knitted fabrics is different. The result indicates that in the case of knitted fabric, comparatively lesser slub thickness is found to be suitable for getting better fabric abrasion resistance, whereas in the case of woven fabric, comparatively higher slub thickness is found suitable for the same.


2014 ◽  
Vol 26 (1) ◽  
pp. 67-95
Author(s):  
Kadir Bilisik ◽  
Bekir Yildirim

Purpose – The aim of this study was to understand the stick-slip properties of single and multiple yarn pull-out in dry and treated polyester satin woven fabric in boundary regions. Design/methodology/approach – Polyester satin pattern woven fabric was used to conduct the pull-out tests in order to examining the kinetic region of the force-displacement curve. Data generated from this research help the authors to obtain stick-slip force and accumulative retraction force. Findings – It was found that stick-slip force and accumulative retraction force depend on the number of pulled ends in the fabric, fabric sample dimensions and softening treatments. Stick-slip forces of polyester satin fabric in the multiple yarn pull-out test were higher than those of the single yarn pull-out test. Stick-slip force in single and multiple yarn pull-out tests in the dry polyester satin fabric was generally higher than those of the softening treated polyester satin fabric. In addition, the warp directional single and multiple yarn stick-slip and accumulative retraction forces in the dry and softening treated polyester fabrics were generally higher than those in the weft direction in the fabric edges due to fabric density. On the other hand, the amount of stick-slip force was related to the number of interlacement points in the fabric, whereas the amount of accumulative retraction force was related to fabric structural response. Originality/value – The mechanism of stick-slip and accumulative retraction force of dry-treated polyester satin pattern woven fabrics were explained. This research could be valuable for development of multifunctional fabrics in technical textiles and ballistic.


2018 ◽  
Vol 30 (4) ◽  
pp. 536-547
Author(s):  
Adeela Nasreen ◽  
Muhammad Umair ◽  
Khubab Shaker ◽  
Syed Talha Ali Hamdani ◽  
Yasir Nawab

Purpose The purpose of this paper is to investigate the effect of materials, three dimensional (3D) structure and number of fabric layers on ultraviolet protection factor (UPF), air permeability and thickness of fabrics. Design/methodology/approach Total 24 fabrics samples were developed using two 3D structures and two weft materials. In warp direction cotton (CT) yarn and in weft direction polypropylene (PP) and polyester (PET) were used. Air permeability, thickness and UPF testings were performed and relationship among fabric layers, air permeability, thickness and UPF was developed. Findings UPF and thickness of fabrics increases with number of fabric layers, whereas air permeability decreases with the increase in number of fabric layers. Furthermore, change of multilayer structure from angle interlock to orthogonal interlock having same base weave does not give significant effect on UPF. However, change of material from polyester (PET) to polypropylene (PP) has a dominant effect on UPF. Minimum of three layers of cotton/polyester fabric, without any aid of ultraviolet radiation (UV) resistant coating, are required to achieve good. Cotton/polyester fabrics are more appropriate for outdoor application due to their long-term resistance with sunlight exposure. Originality/value Long-term exposure to UV is detrimental. So, there is need of proper selection of material and fabric to achieve ultraviolet protection. 3D fabrics have yarns in X, Y as well as in Z directions which provide better ultraviolet protection as compared to two dimensional (2D) fabrics. In literature, mostly work was done on ultraviolet protection of 2D fabrics and surface coating of fabrics. There is limited work found on UPF of 3D woven fabrics.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nilhan Niles ◽  
Sandun Fernando ◽  
Nipuni Rathnayake ◽  
Ayesha Hewamalavi ◽  
Samudika Weerasinghe

Purpose Woven fabrics have been popularised in use owing to their superior properties and functionality. Today, weavers strive to add value to their product to be competitive and to secure profit in performance fabrics such as technical fabrics, smart fabrics and sportswear fabrics. Over the years, fabrics with special properties such as moisture management have gained higher demand. In this context, multi-layer fabrics provide a reasonable solution to the demand. Design/methodology/approach An attempt was made to develop two-layer fabrics with different compositions and properties. A two-layer woven fabric was produced using handloom weaving, with a hydrophobic inner layer and hydrophilic outer layer, the two layers being attached together using different stitching methods. Different fabric structures and yarn counts were used to achieve the objectives. Findings Experiments carried out verified the suitability of the developed fabric for effective moisture management. It was found that a fabric with a 100% cotton outer layer and 100% polyester inner layer, both layers of 2 × 2 matt weave, showed the best properties. Practical implications In the present COVID-19 pandemic situation, the use of masks in public has become mandatory in many countries. This research will help handloom manufacturers meet the need using simple methods. Originality/value This research uses handloom fabric. As such it provides an opportunity for small and medium enterprises to use available low-cost technology to develop fabric with superior properties.


2015 ◽  
Vol 27 (3) ◽  
pp. 447-459
Author(s):  
Iwona Frydrych ◽  
Małgorzata Matusiak

Purpose – The purpose of this paper is to investigate the relationship between the formability of cotton and cotton/polyester woven fabrics and their selected properties: weft density, weave and a way of finishing. It shows how the mentioned properties influence fabric formability and analyze a statistical significance of investigated relationships. Design/methodology/approach – In paper two groups of cotton and cotton/polyester woven fabrics of different structure and a way of finishing have been measured in the range of their basic structural properties as well as bending rigidity and initial Young’s modulus. Formability of investigated fabrics has been calculated on the basis of bending rigidity and initial Young’s modulus. Next, ANOVA has been performed in order to analyze the relationships between the weft density, weave and a way of finishing of woven fabrics and their formability. Findings – The paper shows that all selected properties of woven fabrics significantly influence their formability as well as that there is statistically significant interaction between mentioned independent factors. It provides empirical results confirming that the influence of raw material composition of investigated cotton and cotton/polyester woven fabrics on the formability of fabrics is statistically insignificant. Research limitations/implications – Results of investigations can be applied for cotton and cotton-like woven fabrics. Practical implications – The paper includes implications for woven fabric engineering from the point of view of achieving the expected fabric formability. Social implications – The results enables the choice of appropriate fabric for the given clothing. Originality/value – This paper fulfills an identified need to study how the formability of woven fabrics can be shaped by an appropriate selection of their structure and a way of finishing.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kura Alemayehu Beyene ◽  
Wassie Mengie ◽  
Chirato Godana Korra

Purpose The purpose of this study is to investigate the effects of weft yarn diameter and pick density on the properties of surface roughness (SMD) of 3/1 (Z) twill-woven fabrics in three measurement directions weft (0°), the warp (90°) and the diagonal (45°). Design/methodology/approach Nine 3/1 (Z) twill samples were prepared with two factors and three levels and their roughness values were measured in the weft (0°), warp (90°) and diagonal (45°) directions of 3/1 (Z) twill fabrics using the Kawabata-FB4 instrument. Analysis of variance (ANOVA) is used to determine the effect of weft yarn diameter and pick density on SMD properties and comparisons were done in the weft (0°), the warp (90°) and the diagonal (45°) directions. Findings From experimental analysis, weft yarn diameter and pick density affect SMD of 3/1 (Z) twill-woven fabrics in both diagonal (45°) and weft (0°) directions but slightly affect warp (90°) direction. Maximum SMD values were observed in diagonal (45°) directions and the minimum was in warp (90°) directions of fabrics. Weft yarn diameter and pick density are statistically significant on SMD values of 3/1 (Z) twill-woven fabrics for three directions at a 95% confidence interval. Parameter variation in weft directions of 3/1 (Z) twill-woven fabrics also varies SMD values in three directions measurements Originality/value The findings of this study can be usually used for textile technology, industries and laboratories to create a basic understanding for measuring roughness properties of 3/1 (Z) twill fabric. It is also possible to identify the surface characterizations in different directions of measurement for their usage in some specific areas of end application like consumer goods, home textiles, technical textiles, etc.


2016 ◽  
Vol 20 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Rui Zhang ◽  
Binjie Xin

Purpose The purpose of this paper is introducing the image processing technology used for fabric analysis, which has the advantages of objective, digital and quick response. Design/methodology/approach This paper briefly describes the key process and module of some typical automatic recognition systems for fabric analysis presented by previous researchers; the related methods and algorithms used for the texture and pattern identification are also introduced. Findings Compared with the traditional subjective method, the image processing technology method has been proved to be rapid, accurate and reliable for quality control. Originality/value The future trends and limitations in the field of weave pattern recognition for woven fabrics have been summarized at the end of this paper.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Senthil Kumar B. ◽  
Murugan T.

Purpose This paper aims to investigate on composite fabrics to develop the improved sleeping bag using trilayered textile structures. A thermal comfort analysis of fabrics is essential to design an enhanced type of sleeping bag. Design/methodology/approach In this study, optimizing thermal and permeability properties of different combinations of trilayer composite fabrics was done. The inner layer was 100% wool-knitted single jersey fabric. The middle layer was polyester needle punched non-woven fabric. The outermost layer was nylon-based Core-Tex branded waterproof breathable fabric. Five variations in wool-knitted samples were developed by changing the loop length and yarn count to optimize the best possible combination. Two different polyester non-woven fabrics have been produced with the changes in bulk density. Twelve trilayer composite fabric samples have been produced, and thermal comfort properties such as thermal conductivity, thermal absorptivity, thermal resistance, air permeability and relative water vapour permeability have been analysed. Findings Among the 12 samples, one optimized sample has been found with the specification of 100% wool with 25 Tex yarn linear density having 4.432-mm loop length inner-layered fabric, 96 g/m2 polyester nonwoven fabric as the middle layer, and 220 g/m2 Nylon-Core tex branded outermost layer. All the functional properties of the composite fabric are significantly different with the knitted wool fabrics and polyester nonwoven fabrics, which have been confirmed by analysis of variance study. Originality/value This research work supports for producing sleeping bag with enhanced comfort level.


Sign in / Sign up

Export Citation Format

Share Document