Automatic interpolation algorithm for NURBS trajectory of shoe sole spraying based on 7-DOF robot

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gaoping Xu ◽  
Hao Zhang ◽  
Zhuo Meng ◽  
Yize Sun

PurposeThe purpose of this paper is to propose an automatic interpolation algorithm for robot spraying trajectories based on cubic Non-Uniform Rational B-Splines (NURBS) curves, to solve the problem of sparse and incomplete trajectory points of the head and heel of the shoe sole when extracting robot motion trajectories using structured-light 3D cameras and to ensure the robot joints move smoothly, so as to achieve a good effect of automatic spraying of the shoe sole with a 7-degree-of-freedom (DOF) robot.Design/methodology/approachFirstly, the original shoe sole edge trajectory position points acquired by the 3D camera are fitted with NURBS curves. Then, the velocity constraint at the local maximum of the trajectory curvature is used as the reference for curve segmentation and S-shaped acceleration and deceleration planning. Immediately, real-time interpolation is performed in the time domain to obtain the position and orientation of each point of the robot motion trajectory. Finally, the inverse kinematics of the anthropomorphic motion of the 7-DOF robot arm is used to obtain the joint motion trajectory.FindingsThe simulation and experiment prove that the shoe sole spraying trajectory is complete, the spraying effect is good and the robot joint movement is smooth, which show that the algorithm is feasible.Originality/valueThis study is of good practical value for improving the quality of automated shoe sole spraying, and it has wide applicability for different shoe sole shapes.

Author(s):  
Zulkifli Mohamed ◽  
Mitsuki Kitani ◽  
Genci Capi

Purpose – The purpose of this paper is to compare the performance of the robot arm motion generated by neural controllers in simulated and real robot experiments. Design/methodology/approach – The arm motion generation is formulated as an optimization problem. The neural controllers generate the robot arm motion in dynamic environments optimizing three different objective functions; minimum execution time, minimum distance and minimum acceleration. In addition, the robot motion generation in the presence of obstacles is also considered. Findings – The robot is able to adapt its arm motion generation based on the specific task, reaching the goal position in simulated and experimental tests. The same neural controller can be employed to generate the robot motion for a wide range of initial and goal positions. Research limitations/implications – The motion generated yield good results in both simulation and experimental environments. Practical implications – The robot motion is generated based on three different objective functions that are simultaneously optimized. Therefore, the humanoid robot can perform a wide range of tasks in real-life environments, by selecting the appropriate motion. Originality/value – A new method for adaptive arm motion generation of a mobile humanoid robot operating in dynamic human and industrial environments.


2017 ◽  
Vol 41 (3) ◽  
pp. 443-455
Author(s):  
Kuo-Lan Su ◽  
Jian-Fu Weng ◽  
Jr-Hung Guo ◽  
Kai-Lu Cai

This article describes the design of an articulation robot arm with seven joints. The control core of the robot arm is the module-based system built using the Mitsubishi Q series programming logical controller (PLC). The robot arm contains seven AC servomotors, seven driver devices, a vision system and a PLC control system. The PLC-based controller programs the motion trajectory of the gripper to catch or hold the objects and finish the assigned tasks. Kinect system (Asus Xtion Pro-Live, or called RGB-D sensor) acts as the vision system to recognize shape and color of each object. During the experiments, we found that the robot arm recognizes the shape and color of each object, and catches each object moving to the assigned box with the same color.


Author(s):  
Zhaohui Zheng ◽  
Yong Ma ◽  
Hong Zheng ◽  
Yu Gu ◽  
Mingyu Lin

Purpose The welding areas of the workpiece must be consistent with high precision to ensure the welding success during the welding of automobile parts. The purpose of this paper is to design an automatic high-precision locating and grasping system for robotic arm guided by 2D monocular vision to meet the requirements of automatic operation and high-precision welding. Design/methodology/approach A nonlinear multi-parallel surface calibration method based on adaptive k-segment master curve algorithm is proposed, which improves the efficiency of the traditional single camera calibration algorithm and accuracy of calibration. At the same time, the multi-dimension feature of target based on k-mean clustering constraint is proposed to improve the robustness and precision of registration. Findings A method of automatic locating and grasping based on 2D monocular vision is provided for robot arm, which includes camera calibration method and target locating method. Practical implications The system has been integrated into the welding robot of an automobile company in China. Originality/value A method of automatic locating and grasping based on 2D monocular vision is proposed, which makes the robot arm have automatic grasping function, and improves the efficiency and precision of automatic grasp of robot arm.


Author(s):  
Aniruddha V. Shembekar ◽  
Yeo Jung Yoon ◽  
Alec Kanyuck ◽  
Satyandra K. Gupta

Additive manufacturing (AM) technologies have been widely used to fabricate 3D objects quickly and cost-effectively. However, building parts consisting of complex geometries with multiple curvatures can be a challenging process for the traditional AM system whose capability is restricted to planar-layered printing. Using 6-DOF industrial robots for AM overcomes this limitation by allowing materials to deposit on non-planar surfaces with desired tool orientation. In this paper, we present collision-free trajectory planning for printing using non-planar deposition. Trajectory parameters subject to surface curvature are properly controlled to avoid any collision with printing surface. We have implemented our approach by using a 6-DOF robot arm. The complex 3D structures with various curvatures were successfully fabricated, while avoiding any failures in joint movement, holding comparable build time and completing with a satisfactory surface finish.


Author(s):  
Bronius Baksys ◽  
Jolanta Baskutiene ◽  
Saulius Baskutis

Purpose This paper aims to consider the experimental and theoretical investigation of the vibratory alignment of the peg-hole, when the peg is fixed in the remote centre compliance (RCC) device, and the vibrations are provided either to the hole or to the peg. Design/methodology/approach The experimental analysis of the circular and rectangular peg-hole vibratory alignment using the attached to the robot arm RCC device, under vibratory excitation of the hole, has been performed. The parameters of the vibratory excitation and the part-to-part pressing force influence on the alignment process have been analysed. The mathematical approach of the vibratory alignment using the passive compliance device with the vibrations provided to the peg has been proposed, and the simulation has been carried out. Findings The research has approved the applicability of the RCC device for both of the vibratory alignments of the non-chamfered peg-hole parts either circular or rectangular ones. The compensation of the axial misalignments has been resulted by the directional displacement of the peg supported compliantly. To perform the successful alignment of the parts, it has been necessary to adjust the frequency and the amplitude of the vibrations, the pressing force, the lateral, as well as the angular stiffness of the device. Research limitations/implications The experiments on the vibratory alignment of the rectangular peg-hole parts have been carried out considering only the translational misalignment moved into one direction. The non-impact regime of the vibratory alignment has been analysed. Practical implications The obtained results can be applied in designing the reliable and efficient devices of the vibratory assembly for the alignment of the non-chamfered peg-hole parts, as well as for chamfered ones, if the axial misalignment exceeds the width of the chamfer. The vibratory technique and passive compliance provide possibility to accomplish the assembly operations using the non-expensive low accuracy robots. Originality/value The new method and the mathematical approach of the vibratory assembly using the RCC device can ensure the reliable alignment of the non-chamfered parts, chamfered circular and the rectangular ones, in case the axial misalignment exceeds the assembly clearance, and prevent jamming and wedging.


2020 ◽  
Vol 15 (3) ◽  
pp. 783-807
Author(s):  
Masoud Rabbani ◽  
Parisa Hashemi ◽  
Pegah Bineshpour ◽  
Hamed Farrokhi-Asl

Purpose The purpose of this study is twofold: first, to examine the role of non-governmental organizations (NGOs) in increasing customer environmental awareness (CEA) to decrease the municipal solid waste (MSW), and secondly, to examine the effect of government policies in the amount of air pollution caused by transfer stations (TSs). Design/methodology/approach This study proposes a mixed-integer nonlinear programming model. For solving this multi-objective problem, the authors use epsilon constraint method, which presented eight Pareto solutions. For selecting the best solution, the analytic hierarchy process approach is used. The presented model is applied on a real case study, and the results are discussed and sensitivity analysis is implemented on the parameters of the concern. Findings This study confirms the assumption that by allocating budget to NGOs for increasing CEA, the produced waste will be decreased. Research limitations/implications In the present study, the authors only investigate air pollution caused by TS. Future studies can investigate other types of pollution. Furthermore, uncertainty in the amount of produced waste can be variable making the problem closer to the real environment. In this case, robust optimization may have better results. Practical implications Based on the results of sensitivity analysis, some implications obtain that can highlight by managers in the decision-making process. The operational costs of TS have a critical aspect in founding TS, so using new technology and high-tech machines for operational processes of TSs, can result in decreasing the running cost of TSs. Also, the determination of TS capacity is a remarkable issue in optimization, which should be paid special attention to this for the design of TSs in the planning phase of the system. Moreover, collaborating with NGOs has a good effect on increasing CEA that results in a decrease of MSW. Originality/value The role of NGOs and government simultaneity has been considered in a green supply chain. Moreover, the authors considered TS between source and disposal that reduce the time of transferring waste. Therefore, this study can be beneficial for the MSW management system, which faces the problems in the lack of capacity and transportation problems and environmental issues by proposing solutions in three studies including economic, environmental and social aspects.


Author(s):  
Bronwen Williams

Purpose – The purpose of this paper is to examine how the skills involved in building therapeutic relationships, especially the therapeutic use of self, in clinical work can transfer in to teaching, making reference to the supporting education theory. Design/methodology/approach – A review of relevant education and health literature was undertaken. Findings – Mental health practitioners’ skills transfer with good effect to the classroom, therefore clinicians who deliver teaching to mental health colleagues can be seen to be highly effective in promoting excellent learning environments. The teacher, and their teaching, needs to be student focused in the same way that the clinician needs to be patient centred to build the best possible relationships to support development and change. Originality/value – The therapeutic relationship is a fundamental element of mental health work and similarly, the relationships that the teachers develop with students are essential to the promotion of learning environments. However, what creates the teacher-student relationship has been little examined in the literature and this paper suggests that the core elements of the therapeutic relationship, especially therapeutic use of self, transfer to the teaching relationship to impact on learning for mental health staff.


2018 ◽  
Vol 14 (1) ◽  
pp. 123-135 ◽  
Author(s):  
Kevin Bylykbashi ◽  
Evjola Spaho ◽  
Ryoichiro Obukata ◽  
Kosuke Ozera ◽  
Yi Liu ◽  
...  

Purpose The purpose of this work is to implement an ambient intelligence (AmI) testbed to improve human sleeping conditions. Design/methodology/approach The implemented testbed is composed of the sensor node, sink node and actor node. As sensor node, the authors use a microwave sensor module (MSM) called DC6M4JN3000, which emits microwaves in the direction of a human or animal subject. These microwaves reflect back off the surface of the subject and change slightly in accordance with movements of the subject’s heart and lungs. As sink node, the authors use Raspberry Pi 3 Model B computers. In the sink node, the data are processed and then clustered by the k-means clustering algorithm. Then, the result is sent to the actor node (Reidan Shiki PAD module), which can be used for cooling and heating the bed. Findings The authors carried out simulations and experiments. Based on the simulation results, it was found that the room lighting, humidity and temperature have different effects on humans during sleeping. The best performance is shown when LIG parameter is 10 units, HUM parameter is 50 and TEM parameter is 25. Based on experimental results, it was found that the implemented AmI testbed has a good effect on humans during sleeping. Research limitations/implications For simulations, three input parameters were considered. However, new parameters that affect human sleeping conditions also need to be investigated. Further, the experiments were carried out for one person. More extensive experiments with multiple people are needed to have a better evaluation. Originality/value In this research work, a new fuzzy-based system was implemented to improve human sleeping conditions. The authors presented three new input parameters to evaluate the output (sleeping condition). The authors implemented and evaluated a testbed and showed that the implemented AmI testbed has a good effect on humans during sleeping, thus improving their quality of life (QoL).


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xin Wu ◽  
Canjun Yang ◽  
Yuanchao Zhu ◽  
Weitao Wu ◽  
Qianxiao Wei

Purpose This paper aims to present a natural human–robot teleoperation system, which capitalizes on the latest advancements of monocular human pose estimation to simplify scenario requirements on heterogeneous robot arm teleoperation. Design/methodology/approach Several optimizations in the joint extraction process are carried on to better balance the performance of the pose estimation network. To bridge the gap between human joint pose in Cartesian space and heterogeneous robot joint angle pose in Radian space, a routinized mapping procedure is proposed. Findings The effectiveness of the developed methods on joint extraction is verified via qualitative and quantitative experiments. The teleoperation experiments on different robots validate the feasibility of the system controlling. Originality/value The proposed system provides an intuitive and efficient human–robot teleoperation method with low-cost devices. It also enhances the controllability and flexibility of robot arms by releasing human operator from motion constraints, paving a new way for effective robot teleoperation.


Sign in / Sign up

Export Citation Format

Share Document