Seismic fragility assessment of ductile reinforced concrete building frames

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nibas Apu ◽  
Ravi Sinha

Purpose Increasing awareness of the society and complying with design requirements of building codes for seismic safety of structures and inhabitants during severe earthquakes are the primary purpose of seismic analysis. This study aims to present the variability in seismic fragility functions for frames of different heights for the most vulnerable condition of structure using nonlinear time history analysis. Design/methodology/approach A total of 4, 8 and 20 stories reinforced concrete (RC) moment-resisting two-dimensional frames are considered for this study. Ground motions (GM) are selected as per the conditional mean spectrum and these are conditioned on a target spectral acceleration at the concern time period. RC frames are designed and detailed as per Indian standards. A concentrated plasticity approach is adopted for non-linear analytical modeling of the RC frames. Deterministic capacity limit states in terms of maximum inter-story drift ratio are considered for different damage states. Fragility functions have been derived following a lognormal distribution from incremental dynamic analysis curves. Finally, the maximum likelihood estimation of the response is obtained for fitting curves with observed fragility. Findings The fragility functions of the three structures reflect that under critical or extreme conditions of GM the taller buildings have higher fragility than the shorter buildings for each level of limit states even though both are designed to meet their code-level design forces. Research limitations/implications The study is conducted on the extreme scenario of GM conditioned on the fundamental time period of each building, whereas comparison can be developed by selecting various methodologies of GM set. The probabilistic capacity model can be developed for future studies to check the fragility variation with deterministic and probabilistic capacity. Originality/value The investigation endeavors to present a comprehensive fragility assessment framework by analytical method. The outcome will be useful in the development of a disaster management strategy for new or old buildings and the response of seismic force with a variation of the building’s height. The findings will also be useful for updating the earthquake-resistant building codes for the new building construction in a similar context.

Reinforced concrete (RC) framed structures are widely used as load transferring system in residential and commercial buildings. Even though the RC frames are designed for gravitational and seismic forces, but they are week under severe seismic events. The main disadvantage of the framed structures is inefficient bracing systems designed in it. This investigation is conducted mainly to study the effective bracing system in the RC framed structure to transfer the seismic force. This research aims to study the seismic performance of RC frames influenced by the various types of cross bracings under cyclic loading. The finite element analysis software package ABAQUS is used to investigate the braced RC frames analytically. The research scheme consists of three RC frames; the bare frame, the bare frame with single X-bracing (X frame), double X bracing (D-X frame) along the height. The structural parameters include, load-displacement hysteresis envelope, stiffness degradation and energy absorption were studied to analyze the performance of bracings. The results showed that the X frame and D-X frame noticeably increased the lateral strength, stiffness and energy dissipation properties compared to the bare RC frame. The results also indicated that the addition of X bracing along the height significantly enhanced the structural parameters of the RC frame.


Author(s):  
Marcela Alejandra Juliani ◽  
Wellison José de Santana Gomes

Abstract Most current structural design codes are based on the concept of limit states, that is, when a structure fails to meet one of its purposes, it is said that it has reached its limit state. In the design of reinforced concrete structures, the Ultimate Limit State (ULS) and the Serviceability Limit State (SLS) must be checked. Therefore, this paper presents an optimization scheme for reinforced concrete plane frames, in which the objective is to minimize the cost of structures for three cases of constraints: the first is related to ULS and SLS; the second refers only to the ULS; and the third is related only to the SLS. Computational routines for checking limit states of beams and columns are implemented in MATLAB, following the requirements of the Brazilian code. Structural analyses are performed by using the MASTAN2 software, taking into account geometric nonlinearities and a simplified physical nonlinearity method. The objective function considers the cost of concrete, reinforcement and formwork, and the optimization problems are solved by genetic algorithms. Two numerical examples of frames are presented. Regarding the optimal characteristics related to each type of limit state, it is noted that the beams and columns tend to have larger and more reinforced cross sections in the case of the ULS. Even so, optimal structures related to the ULS often do not satisfy SLS and vice versa, which indicates that the optimal characteristics related to each limit state may be different. In addition, it is observed that the SLS is less restrictive than ULS.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
M. Rizwan ◽  
N. Ahmad ◽  
J. Akbar ◽  
B. Ilyas ◽  
Arifullah ◽  
...  

Shake table tests were performed on three two-story 1 : 3 reduced scale RC frame structures, representative of buildings with construction deficiencies in Pakistan. The models were subjected to the natural accelerogram of the 1994 Northridge earthquake and tested under multiple scaled excitations until the models attained incipient collapse state. The models’ damage mechanisms were studied, and the seismic response in terms of floor acceleration and floor displacement was retrieved. A uniform damage scale was developed for global performance assessment of considered deficient RC frames, listing average estimate of limit states’ drifts and base shear coefficients, with measured uncertainty, and describing frame damage condition. Numerical frame models were prepared in finite element-based program SeismoStruct and calibrated against experimental tests. The frames were analyzed through incremental dynamic analyses. Seismic fragility functions were derived using a probabilistic-based methodology, which may be used for global damageability assessment of the considered frame building typology. Available building damage-to-loss factors were employed to transform structural damages to repair cost ratio, which were correlated with seismic intensity (repair cost ratio versus seismic intensity) to derive the seismic vulnerability curve, which may be used for the direct economic loss estimation of the considered frame building typology.


2018 ◽  
Vol 47 (4) ◽  
pp. 350-359 ◽  
Author(s):  
Nivin M. Ahmed ◽  
Mostafa G. Mohamed ◽  
Reham H. Tammam ◽  
Mohamed R. Mabrouk

Purpose This study aims to apply novel anticorrosive pigments containing silica fume-phosphates (Si-Ph), which were prepared using core-shell technique by covering 80-90 per cent silica fume (core) with 10-20 per cent phosphates (shell) previously, to play dual functions simultaneously as anticorrosive pigments in coating formulations and as an anticorrosive admixture in concrete even if it is not present in the concrete itself. Two comparisons were held out to show the results of coatings on rebars containing core-shell pigments in concrete, and concrete admixtured with silica fume can perform a dual function as anticorrosive pigment and concrete admixture. The evaluation of corrosion protection efficiency of coatings containing core-shell pigments and those containing phosphates was performed. Design/methodology/approach Simple chemical techniques were used to prepare core-shell pigments, and their characterization was carried out in a previous work. These pigments were incorporated in solvent-based paint formulations based on epoxy resin. Different electrochemical techniques such as open-circuit potential and electrochemical impedance spectroscopy were used to evaluate the anticorrosive efficiency of the new pigments. Findings The electrochemical measurements showed that concrete containing coated rebars with core-shell pigments exhibited almost similar results to that of concrete admixtured with silica fume. Also, the anticorrosive performance of coatings containing Si-Ph pigments offered protection efficiency almost similar to that of phosphates, proving that these new pigments can perform both roles as anticorrosive pigment and concrete admixture. Originality/value Although the new Si-Ph pigments contain more than 80 per cent waste material, its performance can be compared to original phosphate pigments in the reinforced concrete.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 295
Author(s):  
Amirhossein Orumiyehei ◽  
Timothy J. Sullivan

To strengthen the resilience of our built environment, a good understanding of seismic risk is required. Probabilistic performance-based assessment is able to rigorously compute seismic risk and the advent of numerical computer-based analyses has helped with this. However, it is still a challenging process and as such, this study presents a simplified probabilistic displacement-based assessment approach for reinforced concrete wall buildings. The proposed approach is trialed by applying the methodology to 4-, 8-, and 12-story case study buildings, and results are compared with those obtained via multi-stripe analyses, with allowance for uncertainty in demand and capacity, including some allowance for modeling uncertainty. The results indicate that the proposed approach enables practitioners to practically estimate the median intensity associated with exceeding a given mechanism and the annual probability of exceeding assessment limit states. Further research to extend the simplified approach to other structural systems is recommended. Moreover, the research highlights the need for more information on the uncertainty in our strength and deformation estimates, to improve the accuracy of risk assessment procedures.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 254
Author(s):  
Alinda Dey ◽  
Akshay Vijay Vastrad ◽  
Mattia Francesco Bado ◽  
Aleksandr Sokolov ◽  
Gintaris Kaklauskas

The contribution of concrete to the tensile stiffness (tension stiffening) of a reinforced concrete (RC) member is a key governing factor for structural serviceability analyses. However, among the current tension stiffening models, few consider the effect brought forth by concrete shrinkage, and none studies take account of the effect for very long-term shrinkage. The present work intends to tackle this exact issue by testing multiple RC tensile elements (with different bar diameters and reinforcement ratios) after a five-year shrinking time period. The experimental deformative and tension stiffening responses were subjected to a mathematical process of shrinkage removal aimed at assessing its effect on the former. The results showed shrinkage distinctly lowered the cracking load of the RC members and caused an apparent tension stiffening reduction. Furthermore, both of these effects were exacerbated in the members with higher reinforcement ratios. The experimental and shrinkage-free behaviors of the RC elements were finally compared to the values predicted by the CEB-fib Model Code 2010 and the Euro Code 2. Interestingly, as a consequence of the long-term shrinkage, the codes expressed a smaller relative error when compared to the shrinkage-free curves versus the experimental ones.


Sign in / Sign up

Export Citation Format

Share Document