Thermal insulation effect on EHL of coated cam/tappet contact during start up

2018 ◽  
Vol 70 (6) ◽  
pp. 917-926 ◽  
Author(s):  
Xianghui Meng ◽  
Changya Yu ◽  
Youbai Xie ◽  
Benfu Mei

Purpose This paper aims to investigate the lubrication performance of cam/tappet contact during start up. Especially, the thermal insulation effects of coating on the lubrication performance during cold start up process and warm start up process are studied. Design/methodology/approach A numerical model for the analysis of thermal elastohydrodynamic lubrication of coated cam/tappet contact is presented. In this model, the Reynolds equation and the energy equations are discretized by the finite difference method and solved jointly. Findings During start up, the contact force at cam nose-to-tappet contact decreases with increasing time, while the absolute entrainment velocity has the upward trend. The minimum film thickness, maximum average temperature and friction power loss increase with increasing time, while the coefficient of friction decreases during start up. Because of the thermal insulation effect, the coating can significantly increase the degree of temperature rise. Compared with the uncoated case, the coated cam/tappet results in a lower friction power loss. Generally, the friction power loss in the cold start up process is much higher than that in the warm start up process. Originality/value By this study, the lubrication performance and the kinematics and the dynamics of the cam/tappet during start up process are investigated. Meanwhile, the thermal insulation effect of coating is also illustrated. The difference of lubrication performance between cold start up process and warm start up process is analyzed. The results and thermal elastohydrodynamic lubrication method presented in this study can be a guidance in the design of the coated cam/tappet.

2016 ◽  
Vol 68 (6) ◽  
pp. 671-675 ◽  
Author(s):  
Zhimin Fan ◽  
Wanfeng Zhou ◽  
Ruixue Wang ◽  
Na Wang

Purpose The purpose of this paper is to derive a new lubrication model of double involute gears drive and study the effect of the tooth waist order parameters of double involute gears on lubrication performance. Design/methodology/approach The new lubrication model of double involute gears drive was established according to the meshing characteristics of double involute gears drive and the finite length line contact elastohydrodynamic lubrication theory. Numerical calculation of the lubrication model of gear drive was conducted using the multigrid method. Findings The results show that the oil film necking phenomenon and the oil film pressure peak emerged at the tooth waist order area and the tooth profile ends, and when compared with involute gear, the lubrication performance at the tooth waist order area is better than that at the tooth profile ends. The effect of tooth waist order parameters on lubrication performance at the tooth waist order area was greater than that at other areas. Originality/value This research will promote the application of the double involute gear as soon as possible, and it has the reference value for other types of gears.


Author(s):  
Yanfang Liu ◽  
Qiang Liu ◽  
Peng Dong

An involute spur gear pair meshing model is firstly provided in this study to achieve relevant data such as rolling velocity, sliding velocity, curvature radius etc. These data are needed in a transient, Newtonian elastohydrodynamic lubrication (EHL) model which is provided later. Based on these two models, the behavior of an engaged spur gear pair during the meshing process is investigated under dynamic conditions, film thickness, pressure, friction coefficient etc. could be achieved through the models. Then, power loss under certain operating condition is calculated. Relationship between power loss and lubrication performance is also analyzed.


2020 ◽  
Vol 72 (9) ◽  
pp. 1059-1073
Author(s):  
Gabriel Welfany Rodrigues ◽  
Marco Lucio Bittencourt

Purpose This paper aims to numerically investigate the surface texturing effects on the main bearings of a three-cylinder ethanol engine in terms of the power loss and friction coefficient for dynamic load conditions. Design/methodology/approach The mathematical formulation considers the Partir-Cheng modified Reynolds equation. The mass-conserving Elrod-Adams p-θ model with the JFO approach is used to deal with cavitation. A fluid-structure coupling procedure is considered for the elastohydrodynamic lubrication. Accordingly, a 3-D linear-elastic substructured finite element model obtained from Abaqus is applied Findings Simulations were carried out considering different dimple texture designs in terms of location, depth and radius. The results suggested that there are regions where texturing is more effective. In addition, distinct journal rotation speeds are studied and the surface texture was able to reduce friction and the power loss by 7%. Practical implications The surface texturing can be a useful technique to reduce the power loss on the crankshaft bearing increasing the overall engine efficiency. Originality/value The surface texturing performance in a three-cylinder engine using ethanol as fuel was investigated through numerical experimentation. The results are supported by previous findings. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2019-0380/


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Andreas Schwarz ◽  
Martin Ebner ◽  
Thomas Lohner ◽  
Karsten Stahl ◽  
Kirsten Bobzin ◽  
...  

Purpose This paper aims to address the influence of diamond-like carbon (DLC) coatings on the frictional power loss of spur gears. It shows potentials for friction and bulk temperature reduction in industrial use. From a scientific point of view, the thermal insulation effect on fluid friction is addressed, which lowers viscosity in the gear contact due to increasing contact temperature. Design/methodology/approach Thermal insulation effect is analyzed in detail by means of the heat balance and micro thermal network of thermal elastohydrodynamic lubrication contacts. Preliminary results at a twin-disk test rig are summarized to categorize friction and bulk temperature reduction by DLC coatings. Based on experiments at a gear efficiency test rig, the frictional power losses and bulk temperatures of DLC-coated gears are investigated, whereby load, speed, oil temperature and coatings are varied. Findings Experimental investigations at the gear efficiency test rig showed friction and bulk temperature reduction for all operating conditions of DLC-coated gears compared to uncoated gears. This effect was most pronounced for high load and high speed. A reduction of the mean gear coefficient of friction on average 25% and maximum 55% was found. A maximum reduction of bulk temperature of 15% was observed. Practical implications DLC-coated gears show a high potential for reducing friction and improving load-carrying capacity. However, the industrial implementation is restrained by the limited durability of coatings on gear flanks. Therefore, a further and overall consideration of key durability factors such as substrate material, pretreatment, coating parameters and gear geometry is necessary. Originality/value Thermal insulation effect of DLC coatings was shown by theoretical analyses and experimental investigations at model test rigs. Although trial tests on gears were conducted in literature, this study proves the friction reduction by DLC-coated gears for the first time systematically in terms of various operating conditions and coatings. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0257/


2020 ◽  
Vol 72 (10) ◽  
pp. 1285-1293
Author(s):  
Jia-Jia Zhao ◽  
Ming-Xing Lin ◽  
Xian-Chun Song ◽  
Nan Wei

Purpose This paper aims to provide thermal elastohydrodynamic lubrication (TEHL) contact model to study all balls’ lubrication performance of the ball screw when the multidirectional load is applied. Design/methodology/approach A new TEHL contact model combining the multidirectional load and the roughness surface texture is established to describe fatigue life of the ball screw. Meanwhile, the authors use the Reynolds equation to study the lubrication performance of the ball screw. Findings When the multidirectional load is applied, contact load, slide-roll ratio and entrainment velocity of all balls have a periodic shape. The TEHL performance values at the ball-screw contact points including contact stress, shear stress, minimum film thickness and temperature rise are higher than that at the ball-nut contact points. The TEHL performance values increase with the increase of root mean square (RMS) except for the film thickness. In addition, the radial load of the ball screw has a significant effect on the fatigue life. Originality/value The results of the studies demonstrate the new TEHL contact model that provides the instructive significance to analyze the fatigue life of the ball screw under the multidirectional load. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2020-0097/


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Junning Li ◽  
Ka Han ◽  
Wuge Chen ◽  
Xiaojie Tang ◽  
Qian Wang

Purpose The purpose of this study is to reveal the lubrication performance of textured roller bearings under various texture size, texture depth, texture types and slip. Design/methodology/approach In the present study, the improved thermal elastohydrodynamic lubrication method based on the surface texturing of the textured roller bearings is proposed, and then the effect of texture size, texture depth, texture types and slip on the contact pressure, film thickness and temperature distribution are analyzed systematically. Findings The results show that the pressure decreases and the film thickness increases on the contact area because of the surface texturing. The temperature increases first and then decreases as the texture size increases, and then the temperature increases as the texture depth and the slip increases. Compared to circle and square texture, cross texture can obviously decrease the temperature on the contact area. The effectiveness of the proposed method is verified. Originality/value This study can help to reduce friction and wear of textured roller bearings. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2020-0318/


Author(s):  
Jiaxin Zhao

In this paper, the start up condition in elastohydrodynamic lubrication was studied on a steel ball on glass disc contact lubricated with a mineral oil, using a previously developed mixed phase lubrication contact model. The numerical simulation demonstrated the contact geometry change in the transition from initial solid contact to final fully lubricated contact, as well as the load sharing variation between lubricated and solid contacts during the start up. The numerical results of contact geometry was then compared with an experimental study of the same start up situation published by Glovnea and Spikes [1]. The film thickness variations and the propagation of the solid-lubricated contact interface during the start up were compared. Furthermore, an analytical result of the propagation of the solid-lubricated contact interface was also generated by assuming the dominance of the wedge and squeeze terms in the Reynolds Equation, and was also compared with the numerical and experimental results. Good agreement exists among the analytical, numerical and experimental results. The good agreement proves the numerical model as a valid tool in studying the start up condition in elastohydrodynamic lubrication as the transition from solid contact to lubricated contact is of great importance when investigating the start up process and its effects on the overall lubrication performance.


2016 ◽  
Vol 68 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Xingbao Huang ◽  
Youqiang Wang

Purpose – This paper aims to investigate the mechanism of spur gears running-in and to solve the lubrication problems of teeth running-in. Design/methodology/approach – The elastohydrodynamic lubrication (EHL) model considering solid particles was established by applying multi-grid and multiple-grid integration methods to the numerical solution. Findings – In the region where debris settle, transient pressure increases sharply, and a noticeable increase in the running-in load causes a remarkable increase in both the centre and maximum pressures and a slight increase in the minimum film thickness. Roughness wavelength makes a considerable difference to the minimum film thickness at double-to-single tooth transient. A considerable increase in rotation velocity can cause a remarkable reduction in both the centre and maximum pressures but an amazing increase in the minimum film thickness. The effects of roughness amplitude on the maximum pressure are considerably distinct. Research limitations/implications – Research on EHL of spur gears in the running-in process considering solid particles, surface roughness and time-variant effect is meaningful to practical gears running-in. Thermal effect can be included in the next study. Practical implications – The analysis results can be applied to predict and improve lubrication performance of the meshing teeth. Social implications – The aim is to reduce gears’ manufacture and running-in costs and improve economic performance. Originality/value – The EHL model that considers solid particles was established. The Reynolds equation was deduced taking the effects of solid particles into account. The EHL of spur gears running-in was investigated considering the time-variant effect, surface roughness, running-in load and rotation speed.


2019 ◽  
Vol 72 (3) ◽  
pp. 333-340
Author(s):  
Mingyong Liu ◽  
Peidong Xu ◽  
Jinxi Zhang ◽  
Huafeng Ding

Purpose Power loss is an important index to evaluate the transmission performance of a gear pair. In some cases, the starved lubrication exists on the gear contact interface. The purpose of this paper is to reveal the mechanical power loss of a helical gear pair under starved lubrication. Design/methodology/approach A starved thermal-elastohydrodynamic lubrication (EHL) model is proposed to evaluate the tribological properties of a helical gear pair. The numerical result has been validated against the published simulation data. Based on the proposed model, the influence of thermal effect, working conditions, inlet oil-supply layer and surface roughness on the mechanical power loss and lubrication performance has been discussed. Findings Results show that the thermal effect has a significant effect on the tribological properties of helical gear pair, especially on mechanical power loss. For a specified working condition, there is an optimal oil supply for gear lubrication to obtain the state of full film lubrication. Meanwhile, it reveals that the mechanical power loss increases with the increase of the surface roughness amplitude. Originality/value In this paper, a starved thermal-EHL model has been developed for the helical gear pair based on the finite line contact theory. This model can be used to analyze the tribological properties of gear pair from full film lubrication to mixed lubrication. The results can provide the tribological guidance for design of a helical gear pair.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guanyu Yang ◽  
Zefei Zhu ◽  
Hongyu Zheng ◽  
Shifeng He ◽  
Wanyue Zhang ◽  
...  

Abstract Background This study explored the comparison of the thermal insulation effect of incubator to infusion thermometer in laparoscopic hysterectomy. Methods We assigned 75 patients enrolled in the study randomly to three groups: Group A: Used warming blanket; group B: Used warming blanket and infusion thermometer; group C: Used warming blanket and incubator. The nasopharyngeal temperature at different time points during the operation served as the primary outcome. Results The nasopharyngeal temperature of the infusion heating group was significantly higher than that of the incubator group 60 min from the beginning of surgery (T3): 36.10 ± 0.20 vs 35.81 ± 0.20 (P<0.001)90 min from the beginning of surgery (T4): 36.35 ± 0.20 vs 35.85 ± 0.17 (P<0.001). Besides, the nasopharyngeal temperature of the incubator group was significantly higher compared to that of the control group 60 min from the beginning of surgery (T3): 35.81 ± 0.20 vs 35.62 ± 0.18 (P<0.001); 90 min from the beginning of surgery (T4): 35.85 ± 0.17 vs 35.60 ± 0.17 (P<0.001). Regarding the wake-up time, that of the control group was significantly higher compared to the infusion heating group: 24 ± 4 vs 21 ± 4 (P = 0.004) and the incubator group: 24 ± 4 vs 22 ± 4 (P = 0.035). Conclusion Warming blanket (38 °C) combined infusion thermometer (37 °C) provides better perioperative thermal insulation. Hospitals without an infusion thermometer can opt for an incubator as a substitute. Trial registration This trial was registered with ChiCTR2000039162, 20 October 2020.


Sign in / Sign up

Export Citation Format

Share Document