An improved TEHL analysis of textured roller bearings consider various texture parameters and slip

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Junning Li ◽  
Ka Han ◽  
Wuge Chen ◽  
Xiaojie Tang ◽  
Qian Wang

Purpose The purpose of this study is to reveal the lubrication performance of textured roller bearings under various texture size, texture depth, texture types and slip. Design/methodology/approach In the present study, the improved thermal elastohydrodynamic lubrication method based on the surface texturing of the textured roller bearings is proposed, and then the effect of texture size, texture depth, texture types and slip on the contact pressure, film thickness and temperature distribution are analyzed systematically. Findings The results show that the pressure decreases and the film thickness increases on the contact area because of the surface texturing. The temperature increases first and then decreases as the texture size increases, and then the temperature increases as the texture depth and the slip increases. Compared to circle and square texture, cross texture can obviously decrease the temperature on the contact area. The effectiveness of the proposed method is verified. Originality/value This study can help to reduce friction and wear of textured roller bearings. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2020-0318/

2020 ◽  
Vol 72 (10) ◽  
pp. 1285-1293
Author(s):  
Jia-Jia Zhao ◽  
Ming-Xing Lin ◽  
Xian-Chun Song ◽  
Nan Wei

Purpose This paper aims to provide thermal elastohydrodynamic lubrication (TEHL) contact model to study all balls’ lubrication performance of the ball screw when the multidirectional load is applied. Design/methodology/approach A new TEHL contact model combining the multidirectional load and the roughness surface texture is established to describe fatigue life of the ball screw. Meanwhile, the authors use the Reynolds equation to study the lubrication performance of the ball screw. Findings When the multidirectional load is applied, contact load, slide-roll ratio and entrainment velocity of all balls have a periodic shape. The TEHL performance values at the ball-screw contact points including contact stress, shear stress, minimum film thickness and temperature rise are higher than that at the ball-nut contact points. The TEHL performance values increase with the increase of root mean square (RMS) except for the film thickness. In addition, the radial load of the ball screw has a significant effect on the fatigue life. Originality/value The results of the studies demonstrate the new TEHL contact model that provides the instructive significance to analyze the fatigue life of the ball screw under the multidirectional load. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2020-0097/


2020 ◽  
Vol 72 (9) ◽  
pp. 1059-1073
Author(s):  
Gabriel Welfany Rodrigues ◽  
Marco Lucio Bittencourt

Purpose This paper aims to numerically investigate the surface texturing effects on the main bearings of a three-cylinder ethanol engine in terms of the power loss and friction coefficient for dynamic load conditions. Design/methodology/approach The mathematical formulation considers the Partir-Cheng modified Reynolds equation. The mass-conserving Elrod-Adams p-θ model with the JFO approach is used to deal with cavitation. A fluid-structure coupling procedure is considered for the elastohydrodynamic lubrication. Accordingly, a 3-D linear-elastic substructured finite element model obtained from Abaqus is applied Findings Simulations were carried out considering different dimple texture designs in terms of location, depth and radius. The results suggested that there are regions where texturing is more effective. In addition, distinct journal rotation speeds are studied and the surface texture was able to reduce friction and the power loss by 7%. Practical implications The surface texturing can be a useful technique to reduce the power loss on the crankshaft bearing increasing the overall engine efficiency. Originality/value The surface texturing performance in a three-cylinder engine using ethanol as fuel was investigated through numerical experimentation. The results are supported by previous findings. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2019-0380/


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hekun Jia ◽  
Zeyuan Zhou ◽  
Bifeng Yin ◽  
Huiqin Zhou ◽  
Bo Xu

Purpose The purpose of this study is to investigate the influence of dimple radius, depth and density on the lubrication performance of the plunger. Design/methodology/approach A lubrication model was adopted to consider eccentricity and deformation during the working process of the plunger, and a rig test was performed to confirm the simulation results. The texture was fabricated using laser surface texturing. Findings The simulation results suggested that when dimple radius or depth increases, oil film thickness of the plunger increases before decreasing, and asperity friction displays an opposite trend. Therefore, appropriate microdimple texture could facilitate lubrication performance improvement and reduce the wear. Microdimples were then lased on the plunger surface, and a basic tribological test was conducted to validate the simulation results. The experimental results suggested that the average friction coefficient decreased from 0.18 to 0.13, a reduction of 27.8%. Social implications The introduction of microdimple on a plunger couple to reduce friction and improve lubrication is expected to provide a new approach to developing high-performance plunger couple and improve the performance of the internal combustion engine. If applied, the surface texture could help reduce friction by around 27% and cap the cost relative to the plugger friction. Originality/value The microdimple texture was introduced into the plunger couple of a vehicle to reduce the friction and improve the performance. Findings suggested that surface texture could be used in the automotive industry to improve oil efficiency and lubrication performance. Peer review The peer review history for this article is available at: http://dx.doi.org/10.1108/ILT-07-2020-0259.


2020 ◽  
Vol 72 (6) ◽  
pp. 713-722
Author(s):  
Hongwei Tang ◽  
Jing Wang ◽  
Nannan Sun ◽  
Jianrong Zhu

Purpose The influence of the cam angular speed on the pressure, film thickness and temperature profiles at some selected angular positions together with the oil characteristics are investigated. Design/methodology/approach A high-order polynomial cam is used, and thermal elastohydrodynamic lubrication (EHL) calculations are carried out by the multi-grid method and line-line scanning technique. Findings It is found that the film thickness decreases with a decrease in angular speed. The depth of the dimple that occurred in the reverse motion is also reduced because of the recession in the “temperature–viscosity wedge” effect. Originality/value It is revealed that the reduction in the cam angular speed makes the classical big surface dimple evolve into a small centralized dimple during the opposite sliding motion. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0327


2016 ◽  
Vol 68 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Xingbao Huang ◽  
Youqiang Wang

Purpose – This paper aims to investigate the mechanism of spur gears running-in and to solve the lubrication problems of teeth running-in. Design/methodology/approach – The elastohydrodynamic lubrication (EHL) model considering solid particles was established by applying multi-grid and multiple-grid integration methods to the numerical solution. Findings – In the region where debris settle, transient pressure increases sharply, and a noticeable increase in the running-in load causes a remarkable increase in both the centre and maximum pressures and a slight increase in the minimum film thickness. Roughness wavelength makes a considerable difference to the minimum film thickness at double-to-single tooth transient. A considerable increase in rotation velocity can cause a remarkable reduction in both the centre and maximum pressures but an amazing increase in the minimum film thickness. The effects of roughness amplitude on the maximum pressure are considerably distinct. Research limitations/implications – Research on EHL of spur gears in the running-in process considering solid particles, surface roughness and time-variant effect is meaningful to practical gears running-in. Thermal effect can be included in the next study. Practical implications – The analysis results can be applied to predict and improve lubrication performance of the meshing teeth. Social implications – The aim is to reduce gears’ manufacture and running-in costs and improve economic performance. Originality/value – The EHL model that considers solid particles was established. The Reynolds equation was deduced taking the effects of solid particles into account. The EHL of spur gears running-in was investigated considering the time-variant effect, surface roughness, running-in load and rotation speed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Junru Wang ◽  
Quandai Wang ◽  
Yueyan Li ◽  
Meiling Guo ◽  
Pengyang Li ◽  
...  

Purpose The purpose of this paper is to investigate the effects of surface texture with roughness orientation considered on tribological properties under a mixed lubrication state numerically and experimentally. Design/methodology/approach Based on the average Reynolds equation and asperity contact model, the impacts of surface texture parameters and roughness orientation on lubrication properties have been calculated using finite difference method. Tin–bronze samples with various prescribed surface texture geometric parameters and roughness orientation were fabricated by laser surface texturing technique, and the tribology performance of the textured surface was studied experimentally. Findings The effects of surface geometric parameters and roughness orientation parameters have been discerned. The experimental observations are in good agreement with the numerical prediction, which suggests that the numerical scheme adopted in this work is suitable in capturing the surface texture and roughness effect under mixed lubrication state. Originality/value By meticulously controlling the surface roughness and surface texture geometric characteristics based on the laser surface texturing process, samples with prescribed surface texture parameters and roughness orientation consistent with that in theoretical studies were fabricated and the theoretical model and results were verified experimentally.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Wei Pu ◽  
Dong Zhu ◽  
Jiaxu Wang

In this study, a modified mixed lubrication model is developed with consideration of machined surface roughness, arbitrary entraining velocity angle, starvation, and cavitation. Model validation is executed by means of comparison between the obtained numerical results and the available starved elastohydrodynamic lubrication (EHL) data found from some previous studies. A comprehensive analysis for the effect of inlet oil supply condition on starvation and cavitation, mixed EHL characteristics, friction and flash temperature in elliptical contacts is conducted in a wide range of operating conditions. In addition, the influence of roughness orientation on film thickness and friction is discussed under different starved lubrication conditions. Obtained results reveal that inlet starvation leads to an obvious reduction of average film thickness and an increase in interasperity cavitation area due to surface roughness, which results in significant increment of asperity contacts, friction, and flash temperature. Besides, the effect of entrainment angle on film thickness will be weakened if the two surfaces operate under starved lubrication condition. Furthermore, the results show that the transverse roughness may yield thicker EHL films and lower friction than the isotropic and longitudinal if starvation is taken into account. Therefore, the starved mixed EHL model can be considered as a useful engineering tool for industrial applications.


2002 ◽  
Vol 124 (4) ◽  
pp. 811-814 ◽  
Author(s):  
Chaohui Zhang ◽  
Jianbin Luo ◽  
Shizhu Wen

In this paper, a viscosity modification model is developed which can be applied to describe the thin film lubrication problems. The viscosity distribution along the direction normal to solid surface is approached by a function proposed in this paper. Based on the formula, lubricating problem of thin film lubrication (TFL) in isothermal and incompressible condition is solved and the outcome is compared to the experimental data. In thin film lubrication, according to the computation outcomes, the lubrication film thickness is much greater than that in elastohydrodynamic lubrication (EHL). When the velocity is adequately low (i.e., film thickness is thin enough), the pressure distribution in the contact area is close to Hertzian distribution in which the second ridge of pressure is not obvious enough. The film shape demonstrates the earlobe-like form in thin film lubrication, which is similar to EHL while the film is comparatively thicker. The transformation relationships between film thickness and loads, velocities or atmosphere viscosity in thin film lubrication differ from those in EHL so that the transition from thin film lubrication to EHL can be clearly seen.


2016 ◽  
Vol 68 (6) ◽  
pp. 671-675 ◽  
Author(s):  
Zhimin Fan ◽  
Wanfeng Zhou ◽  
Ruixue Wang ◽  
Na Wang

Purpose The purpose of this paper is to derive a new lubrication model of double involute gears drive and study the effect of the tooth waist order parameters of double involute gears on lubrication performance. Design/methodology/approach The new lubrication model of double involute gears drive was established according to the meshing characteristics of double involute gears drive and the finite length line contact elastohydrodynamic lubrication theory. Numerical calculation of the lubrication model of gear drive was conducted using the multigrid method. Findings The results show that the oil film necking phenomenon and the oil film pressure peak emerged at the tooth waist order area and the tooth profile ends, and when compared with involute gear, the lubrication performance at the tooth waist order area is better than that at the tooth profile ends. The effect of tooth waist order parameters on lubrication performance at the tooth waist order area was greater than that at other areas. Originality/value This research will promote the application of the double involute gear as soon as possible, and it has the reference value for other types of gears.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liangwei Qiu ◽  
Xiaoyang Chen ◽  
Fakai Dong

Purpose This paper aims to experimentally investigate the film-forming capability of base oils containing poly-methacrylate (PMA) and poly-isobutene (PIB), in a point contact under pure rolling. Design/methodology/approach By using the relative light intensity method, the film thickness is calculated from the interferometer images which are captured by multiple-contact optical elastohydrodynamic lubricated test rig. Findings The test results reveal that polymers, both PMA and PIB, have a significant contribution to the film-forming capability of base oils and the film thickness increases with concentration. The forming-film capabilities for PMA and PIB in base oils are similar at low concentration, while PIB gives a higher film thickness than PMA at high concentration. Shear-thinning phenomenon are observed in all polymer-based oils. Originality/value The polymer usually as an additive is added into the low viscosity base oils to improve the properties of lubricant oil. This paper reports the lubricated properties of PMA and PIB with different concentrations in base oils and to evaluate their functional mechanism in a point contact. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0263/


Sign in / Sign up

Export Citation Format

Share Document