Wind-driven land-yacht robot mathematical modeling and verification
Purpose – The purpose of this paper was to solve the shortage of carrying energy in probing robot and make full use of wind resources in the Antarctic expedition by designing a four-wheel land-yacht. Land-yacht is a new kind of mobile robot powered by the wind using a sail. The mathematical model and trajectory of the land-yacht are presented in this paper. Design/methodology/approach – The mechanism analysis method and experimental modeling method are used to establish a dual-input and dual-output mathematical model for the motion of land-yacht. First, the land-yacht’s model structure is obtained by using mechanism analysis. Then, the models of steering gear, servomotors and force of wing sail are analyzed and validated. Finally, the motion of land-yacht is simulated according to the mathematical model. Findings – The mathematical model is used to analyze linear motion and steering motion. Compared with the simulation results and the actual experimental tests, the feasibility and reliability of the proposed land-yacht modeling are verified. It can travel according to the given signal. Practical implications – This land-yacht can be used in the Antarctic, outer planet or for harsh environment exploration. Originality/value – A land-yacht is designed, and the contribution of this research is the development of a mathematical model for land-yacht robot. It provides a theoretical basis for analysis of the land-yacht’s motion.