Deflection behavior and load-bearing period of structural glued laminated timber beams in fire including cooling phase

2018 ◽  
Vol 9 (4) ◽  
pp. 287-299
Author(s):  
Hitoshi Kinjo ◽  
Yusuke Katakura ◽  
Takeo Hirashima ◽  
Shuitsu Yusa ◽  
Kiyoshi Saito

Purpose This paper aims to discuss the fire performance of glulam timber beams based on their deflection behavior and load-bearing period, which were obtained from load-bearing fire tests under constant load conditions. Design/methodology/approach In this report, the fire performance, primarily deflection behavior and load-bearing period of glued laminated (glulam) timber beams will be discussed from the standpoint of load-bearing fire tests conducted during the cooling phase under constant load conditions. Then, based on the charring depth and the per section temperature transformation obtained from loading test results, the load-bearing capacity of the glulam timber beams will be discussed using the effective section method and the strength reduction factor, which will be calculated in accordance with the European standards for the design of timber structures (Eurocode 5). Findings In the cooling phase, the charring rate is decreases. However, as the temperature in the cross section rises, the deflection is increases. The failure mode was bending failure because of tensile failure of the lamina at the bottom of the beam. Moreover, a gap caused by shear failure in a growth ring in the beam cross-section in the vicinity of the centroid axis was observed. Shear failure was observed up until 1 to 3 h before end of heating. The calculated shear strength far exceeded the test results. Shear strength for elevated temperature of glued laminated timber is likely to decrease than the shear strength in Eurocode 5. Originality/value Unlike other elements, a characteristic problem of timber elements is that their load-bearing capacity decreases as they are consumed in a fire, and their bearing capacities may continue to degrade even after the fuel in the room has been exhausted. Therefore, the structural fire performance of timber elements should be clarified during not only the heating phase but also the subsequent cooling phase. However, there are few reports on the load-bearing capacity of timber elements that take the cooling phase after a fire into consideration.

2020 ◽  
Vol 2 (61) ◽  
pp. 5-11
Author(s):  
S. Shekhorkina ◽  
◽  
К. Shliakhov ◽  
А. Sopilniak ◽  
◽  
...  

With the transition to the design of timber structures in accordance with European standards, problems arise in assessment of the load-bearing capacity of glued timber structures that are caused by insufficient amount of data about the physical, mechanical and deformation properties of glued timber, which is produced in Ukraine. The aim of the work was to determine the load bearing capacity in bending and deflection of a glued timber beam under the action of a concentrated load in the middle of the span. Two glued laminated timber beams were used in the experiment. Both beams were made using lumber from pine wood and a moisture-curing onecomponent polyurethane adhesive Kleiberit PUR 510 FiberBond. The beams have the dimensions of the cross-section: width of 120 mm and height of 180 mm. The length of the beams was 9880 mm. Each beam consisted of 9 layers of 20 mm thick lamellas glued together. Considering the absence of the data on the strength class of the beam material, the theoretical load bearing capacity and deflection were determined according to the characteristics of the GL24h class (minimum strength class), and amounted to 722 kgf and 19.1 cm, respectively. As a result of the tests, the failure load and the deflection of the beams were determined, and the dependences of the deflection on the load were obtained. The actual deflection of the beams determined was 251 mm and 275 mm, which is 1.31 and 1.44 times higher than the predicted deflection. Accordingly, the failure load determined experimentally is 1.96 and 2.03 times higher than the theoretical value. During the tests, the features of the deformation and the nature of the destruction of the beams were investigated. Wherein, the determining factor was the presence of defects in timber and lamellas joints along the length in the most stressed layers. Based on the data obtained, recommendations on manufacturing aimed at the increasing the bending strength of glued laminated timber beams are given. The results obtained will be further used in the development of structural solutions for hybrid timber-concrete floors.


2016 ◽  
Vol 7 (4) ◽  
pp. 349-364 ◽  
Author(s):  
H. Kinjo ◽  
T. Hirashima ◽  
S. Yusa ◽  
T. Horio ◽  
T. Matsumoto

Purpose Based on heating tests and load-bearing fire tests, this paper aims to discuss the charring rate, the temperature distribution in the section and the load-bearing capacity of structural glued laminated timber beams not only during the heating phase during a 1-h standard fire in accordance with ISO 834-1 but also during the cooling phase. Design/methodology/approach Heating tests were carried out to confirm the charring rate and the temperature distribution in the cross-section of the beams. Loading tests under fire conditions were carried out to obtain the load-deformation behavior (i.e. the stiffness, maximum load and ductility) of the beam. Findings The temperature at the centroid reached approximately 30°C after 1 h and then increased gradually until reaching 110-200°C after 4 h, during the cooling phase. The maximum load of the specimen exposed to a 1-h standard fire was reduced to approximately 30 per cent of that of the specimen at ambient temperature. The maximum load of the specimen exposed to a 1-h standard fire and 3 h of natural cooling in the furnace was reduced to approximately 14 per cent. In case of taking into consideration of the strength reduction at elevated temperature, the reduction ratio of the calculated bending resistance agreed with that of the test results during not only heating phase but also cooling phase. Originality/value The results of this study state that it is possible to study on strength reduction in cooling phase for end of heating, timber structural which has not been clarified. It is believed that it is possible to appropriately evaluate the fire performance, including the cooling phase of the timber structural.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4019
Author(s):  
Klaudia Śliwa-Wieczorek ◽  
Krzysztof Adam Ostrowski ◽  
Justyna Jaskowska-Lemańska ◽  
Anna Karolak

Composite materials are increasingly used to strengthen existing structures or new load-bearing elements, also made of timber. In this paper, the effect of the number of layers of Carbon Fiber Reinforced Polymer (CFRP) on the load-bearing capacity and stiffness of Glued Laminated Timber beams was determined. Experimental research was performed on 32 elements—a series of eight unreinforced beams, and three series of eight reinforced beams: with one, three and five layers of laminate each. The beams with a cross-section of 38 mm × 80 mm and a length of 750 mm were subjected to the four-point bending test according to standard procedure. For each series, destructive force, deflection, mode of failure, and equivalent stiffness were determined. In addition, for the selected samples, X-ray computed tomography was performed before and after their destruction to define the quality of the interface between wood and composite. The results of the conducted tests and analyses showed that there was no clear relationship between the number of reinforcement layers and the load-bearing capacity of the beams and their stiffness. Unreinforced beams failed due to tension, while reinforced CFRP beams failed due to shear. Despite this, a higher energy of failure of composite-reinforced elements was demonstrated in relation to the reference beams.


2016 ◽  
Vol 711 ◽  
pp. 564-571 ◽  
Author(s):  
Thomas Gernay

The use of high strength concrete (HSC) in multi-story buildings has become increasingly popular. Selection of HSC over normal strength concrete (NSC) allows for reducing the dimensions of the columns sections. However, this reduction has consequences on the structural performance in case of fire, as smaller cross sections lead to faster temperature increase in the section core. Besides, HSC experiences higher rates of strength loss with temperature and a higher susceptibility to spalling than NSC. The fire performance of a column can thus be affected by selecting HSC over NSC. This research performs a comparison of the fire performance of HSC and NSC columns, based on numerical simulations by finite element method. The thermal and structural analyses of the columns are conducted with the software SAFIR®. The variation of concrete strength with temperature for the different concrete classes is adopted from Eurocode. Different configurations are compared, including columns with the same load bearing capacity and columns with the same cross section. The relative loss of load bearing capacity during the fire is found to be more pronounced for HSC columns than for NSC columns. The impact on fire resistance rating is discussed. These results suggest that consideration of fire loading limits the opportunities for use of HSC, especially when the objective is to reduce the dimensions of the columns sections.


2017 ◽  
Vol 27 (4) ◽  
pp. 143-156 ◽  
Author(s):  
Maciej Szumigała ◽  
Ewa Szumigała ◽  
Łukasz Polus

Abstract This paper presents an analysis of timber-concrete composite beams. Said composite beams consist of rectangular timber beams and concrete slabs poured into the steel sheeting. The concrete slab is connected with the timber beam using special shear connectors. The authors of this article are trying to patent these connectors. The article contains results from a numerical analysis. It is demonstrated that the type of steel sheeting used as a lost formwork has an influence on the load-bearing capacity and stiffness of the timber-concrete composite beams.


Author(s):  
Anne K. Kawohl ◽  
Jörg Lange

Prior investigations of the load bearing capacity of bolts during fire have shown differing behaviour between bolts that were loaded by shear or by tensile loads. The interaction of the two loads has not yet been examined under fire conditions. This paper describes a preliminary test series on the post-fire performance of high-strength bolts of the property class 10.9 under combined tension and shear. The results show that how the bolt is loaded influences the load bearing capacity. It is assumed that this is also true at elevated temperatures. Further, atest set-up for experiments at elevated temperatures and a more detailed test series on the post-fire performance under combined tension and shear is presented.


2015 ◽  
Vol 67 (4) ◽  
pp. 359-369 ◽  
Author(s):  
Hui Zhang ◽  
Guangneng Dong ◽  
Meng Hua ◽  
Feifei Guo ◽  
Kwai Sang Chin

Purpose – The main purpose of this paper is to understand and model the hydrodynamic influence of surface textures on journal bearings. Design/methodology/approach – In the model, a rectangular array of circle dimples is used to modify the film thickness expression. In full film and cavitation regions, classical Reynolds equation and Reynolds boundary condition are used as the governing equations, respectively. By setting high load bearing capacity as the main optimal goal, the influence of textures on tribological characteristics is studied to get the optimal distribution and parameters of textures. Findings – The results suggest that the load bearing capacity of a journal bearing may be improved through appropriate arrangement of textures partially covering its sleeve. The reduction of the cavitation area may also be achieved by arranging the textures in divergent region. With a high density distribution of textures which have step depths varying linearly along the circumferential direction of the bearing, the load bearing capacity enhancement seems to give good performance. Comparing with smooth bearing, the load bearing capacity enhancement of such textures is about 56.1 per cent, although the influence of texture diameters for the same area density seems insignificant. Originality/value – The paper shows how surface textures can be designed on journal bearing to improve its tribological performances.


2013 ◽  
Vol 778 ◽  
pp. 361-368
Author(s):  
Anatoly Yakovlevich Naychuk

The results of experimental and theoretical study of the load-bearing capacity and stiffness of wooden beams with through-thickness cracks depending on their length and location throughout the height of cross-section are given. The analysis of the regularity of change of stress-strain state, stress intensity factors (SIF) and at crack tips, deflections and timber beams load-bearing capacity depending on beam span length versus cross-section height, crack length versus span length, crack location throughout beam height was made. It has been established that load-bearing capacity and stiffness of timber beams with through-thickness cracks depends not only on the crack length, but its location throughout cross-section height as well. Procedure of assessing load-bearing capacity and stiffness of timber beams with through-thickness cracks based on fracture mechanics methods is given.


Sign in / Sign up

Export Citation Format

Share Document