Study of Love-type wave vibrations in double sandy layers on half-space of viscoelastic

2019 ◽  
Vol 16 (4) ◽  
pp. 731-748
Author(s):  
Raju Kumhar ◽  
Santimoy Kundu ◽  
Manisha Maity ◽  
Shishir Gupta

Purpose The purpose of this paper is to examine the dependency of dispersion and damping behavior of Love-type waves on wave number in a heterogeneous dry sandy double layer of finite thickness superimposed on heterogeneous viscoelastic substrate under the influence of hydrostatic initial stress. Design/methodology/approach The mechanical properties of the material of both the dry sandy layers vary with respect to a certain depth as quadratic and hyperbolic function, while it varies as an exponential function for the viscoelastic semi-infinite medium. The method of the separation of variables is employed to obtain the complex frequency equation. Findings The complex frequency equation is separated into real and imaginary components corresponding to dispersion and damping equation. After that, the obtained result coincides with the pre-established classical equation of Love wave, as shown in Section 5. The response of all mechanical parameters such as heterogeneities, sandiness, hydrostatic stress, thickness ratio, attenuation and viscoelasticity on both the phase and damped velocity against real wave number has been discussed with the help of numerical example and graphical demonstrations. Originality/value In this work, a comparative study clarifies that the Love wave propagates with higher speed in an isotropic elastic structure as compared to the proposed model. This study may find its applications in the investigation of mechanical behavior and deformation of the sedimentary rock.

2014 ◽  
Vol 06 (05) ◽  
pp. 1450050 ◽  
Author(s):  
SANTIMOY KUNDU ◽  
SHISHIR GUPTA ◽  
SANTANU MANNA ◽  
PRALAY DOLAI

The present paper is devoted to study the Love wave propagation in a fiber-reinforced medium laying over a nonhomogeneous half-space. The upper layer is assumed as reinforced medium and we have taken exponential variation in both rigidity and density of lower half-space. As Mathematical tools the techniques of separation of variables and Whittaker function are applied to obtain the dispersion equation of Love wave in the assumed media. The dispersion equation has been investigated for three different cases. In a special case when both the media are homogeneous our computed equation coincides with the classical equation of Love wave. For graphical representation, we used MATLAB software to study the effects of reinforced parameters and inhomogeneity parameters. It has been observed that the phase velocity increases with the decreases of nondimensional wave number. We have also seen that the phase velocity decreases with the increase of reinforced parameters and inhomogeneity parameters. The results may be useful to understand the nature of seismic wave propagation in fiber reinforced medium.


2015 ◽  
Vol 11 (3) ◽  
pp. 386-400 ◽  
Author(s):  
Rajneesh Kakar

Purpose – The purpose of this paper is to investigate the existence of SH-waves in fiber-reinforced layer placed over a heterogeneous elastic half-space. Design/methodology/approach – The heterogeneity of the elastic half-space is caused by the exponential variations of density and rigidity. As a special case when both the layers are homogeneous, the derived equation is in agreement with the general equation of Love wave. Findings – Numerically, it is observed that the velocity of SH-waves decreases with the increase of heterogeneity and reinforced parameters. The dimensionless phase velocity of SH-waves increases with the decreases of dimensionless wave number and shown through figures. Originality/value – In this work, SH-wave in a fiber-reinforced anisotropic medium overlying a heterogeneous gravitational half-space has been investigated analytically and numerically. The dispersion equation for the propagation of SH-waves has been observed in terms of Whittaker function and its derivative of second degree order. It has been observed that on the removal of heterogeneity of half-space, and reinforced parameters of the layer, the derived dispersion equation reduces to Love wave dispersion equation thereby validates the solution of the problem. The equation of propagation of Love wave in fiber-reinforced medium over a heterogeneous half-space given by relevant authors is also reduced from the obtained dispersion relation under the considered geometry.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shishir Gupta ◽  
Soumik Das ◽  
Rachaita Dutta

PurposeThe purpose of the present study is to investigate the dispersion and damping behaviors of Love-type waves propagating in an irregular fluid-saturated fissured porous stratum coated by a sandy layer.Design/methodology/approachTwo cases are analyzed in this study. In case-I, the irregular fissured porous stratum is covered by a dry sandy layer, whereas in case-II, the sandy layer is considered to be viscous in nature. The method of separation of variables is incorporated in this study to acquire the displacement components of the considered media.FindingsWith the help of the suitable boundary conditions, the complex frequency relation is established in each case leading to two distinct equations. The real and imaginary parts of the complex frequency relation define the dispersion and attenuation properties of Love-type waves, respectively. Using the MATHEMATICA software, several graphical implementations are executed to illustrate the influence of the sandiness parameter, total porosity, volume fraction of fissures, fluctuation parameter, flatness parameters and ratio of widths of layers on the phase velocity and attenuation coefficient. Furthermore, comparison between the two cases is clearly framed through the variation of aforementioned parameters. Some particular cases in the presence and absence of irregular interfaces are also analyzed.Originality/valueTo the best of the authors' knowledge, although many articles regarding the surface wave propagation in different crustal layers have been published, the propagation of Love-type waves in a sandwiched fissured porous stratum with irregular boundaries is still undiscovered. Results accomplished in this analytical study can be employed in different practical areas, such as earthquake engineering, material science, carbon sequestration and seismology.


2016 ◽  
Vol 33 (1) ◽  
pp. 13-22 ◽  
Author(s):  
S. Kundu ◽  
P. Alam ◽  
S. Gupta ◽  
D. Kr. Pandit

AbstractThe present study deals with the affected behaviour of SH-wave propagation through a viscoelastic layer sandwiched between an anisotropic porous layer of finite thickness and an isotropic half space. The sandwiched viscoelastic layer is considered as heterogeneous medium of finite thickness and isotropic half-space is considered as initially stressed medium. The method of separation of variables has been applied to obtain the dispersion equation of SH-wave in their respective media. The obtained complex dispersion relation has been separated into real and imaginary parts. Moreover, the dispersion relation has been satisfied with the classical condition of Love waves. The effects of heterogeneity, attenuation constant, dissipation factor of viscoelasticity, initial stress (compressive), thickness ratio of two layers and porosity on the propagation of SH-waves have been shown by number of graphs. Graphs have been plotted for the dimensionless phase and damping velocity on the propagation of SH-waves with respect to the dimensionless real wave number. The results may be useful to explore the nature and peculiarity of SH-wave propagation in the viscoelastic structure.


2015 ◽  
Vol 11 (3) ◽  
pp. 424-436
Author(s):  
Rajneesh Kakar

Purpose – The purpose of this paper is to deal with the propagation of Love waves in inhomogeneous viscoelastic layer overlying a gravitational half-space. It has been observed velocity of Love waves depends on viscosity, gravity, inhomogeneity and initial stress of the layer. Design/methodology/approach – The dispersion relation for the Love wave in closed form is obtained with Whitaker’s function. Findings – The effect of various non-dimensional inhomogeneity factors, gravity factor and internal friction on the non-dimensional Love wave velocity has been shown graphically. The authors observed that the dispersion curve of Love wave increases as the inhomogeneity factor increases. It is seen that increment in gravity, inhomogeneity and internal friction decreases the damping phase velocity of Love waves but it is more prominent in case of internal friction. Originality/value – Surface plot of Love wave reveals that the velocity ratio increases with the increase of non-dimensional phase velocity and non-dimensional wave number. The above results may attract seismologists and geologists.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Parvez Alam ◽  
Suprava Jena ◽  
Irfan Anjum Badruddin ◽  
Tatagar Mohammad Yunus Khan ◽  
Sarfaraz Kamangar

Purpose This paper aims to study the attenuation and dispersion phenomena of shear waves in anelastic and elastic porous strips. Numerical investigations are performed for the phase and damped velocity profiles of the wave. For numerical computation purposes, water-saturated limestone and kerosene oil saturated sandstone for the first and second porous strips, respectively. Some other peculiarities have been observed and discussed. Design/methodology/approach Dispersion and attenuation characteristic of the shear wave propagations have been studied in an inhomogeneous poro-anelastic strip of finite thickness, which is clamped between an inhomogeneous poroelastic strip of finite thickness and an elastic half-space. Both the strips are initially stressed and the half-space is self-weighted. Analytical methods are used to calculate the interior deformations of the model with the involvement of special functions. The determination of the frequency equation, which includes the Bessel’s and Whittaker functions, has been obtained using the prescribed boundary conditions. Findings Impacts of attenuation coefficient, dissipation factor, inhomogeneities, initial stresses, Biot’s gravity, porosity and thickness ratio parameters on the velocity profile of the wave have been demonstrated through the graphical visuals. These parameters are playing an important role and working as a catalyst in affecting the propagation behaviour of the wave. Originality/value Inclusion of the concept of doubly layered initially stressed inhomogeneous porous structure of elastic and anelastic medium bedded over a self-weighted half-space medium brings a novelty to the existing literature related to the study of shear wave. It may be helpful to geologists, seismologists and structural engineers in the development of theoretical and practical studies.


1993 ◽  
Vol 115 (3) ◽  
pp. 302-312 ◽  
Author(s):  
J. H. Terhune ◽  
K. Karim-Panahi

The free vibration of cylindrical shells filled with a compressible viscous fluid has been studied by numerous workers using the linearized Navier-Stokes equations, the fluid continuity equation, and Flu¨gge ’s equations of motion for thin shells. It happens that solutions can be obtained for which the interface conditions at the shell surface are satisfied. Formally, a characteristic equation for the system eigenvalues can be written down, and solutions are usually obtained numerically providing some insight into the physical mechanisms. In this paper, we modify the usual approach to this problem, use a more rigorous mathematical solution and limit the discussion to a single thin shell of infinite length and finite radius, totally filled with a viscous, compressible fluid. It is shown that separable solutions are obtained only in a particular gage, defined by the divergence of the fluid velocity vector potential, and the solutions are unique to that gage. The complex frequency dependence for the transverse component of the fluid velocity field is shown to be a result of surface interaction between the compressional and vortex motions in the fluid and that this motion is confined to the boundary layer near the surface. Numerical results are obtained for the first few wave modes of a large shell, which illustrate the general approach to the solution. The axial wave number is complex for wave propagation, the imaginary part being the spatial attenuation coefficient. The frequency is also complex, the imaginary part of which is the temporal damping coefficient. The wave phase velocity is related to the real part of the axial wave number and turns out to be independent of frequency, with numerical value lying between the sonic velocities in the fluid and the shell. The frequency dependencies of these parameters and fluid velocity field mode shapes are computed for a typical case and displayed in non-dimensional graphs.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yongliang Wang ◽  
Jianhui Wang

PurposeThis study presents a novel hp-version adaptive finite element method (FEM) to investigate the high-precision eigensolutions of the free vibration of moderately thick circular cylindrical shells, involving the issues of variable geometrical factors, such as the thickness, circumferential wave number, radius and length.Design/methodology/approachAn hp-version adaptive finite element (FE) algorithm is proposed for determining the eigensolutions of the free vibration of moderately thick circular cylindrical shells via error homogenisation and higher-order interpolation. This algorithm first develops the established h-version mesh refinement method for detecting the non-uniform distributed optimised meshes, where the error estimation and element subdivision approaches based on the superconvergent patch recovery displacement method are introduced to obtain high-precision solutions. The errors in the vibration mode solutions in the global space domain are homogenised and approximately the same. Subsequently, on the refined meshes, the algorithm uses higher-order shape functions for the interpolation of trial displacement functions to reduce the errors quickly, until the solution meets a pre-specified error tolerance condition. In this algorithm, the non-uniform mesh generation and higher-order interpolation of shape functions are suitable for addressing the problem of complex frequencies and modes caused by variable structural geometries.FindingsNumerical results are presented for moderately thick circular cylindrical shells with different geometrical factors (circumferential wave number, thickness-to-radius ratio, thickness-to-length ratio) to demonstrate the effectiveness, accuracy and reliability of the proposed method. The hp-version refinement uses fewer optimised meshes than h-version mesh refinement, and only one-step interpolation of the higher-order shape function yields the eigensolutions satisfying the accuracy requirement.Originality/valueThe proposed combination of methodologies provides a complete hp-version adaptive FEM for analysing the free vibration of moderately thick circular cylindrical shells. This algorithm can be extended to general eigenproblems and geometric forms of structures to solve for the frequency and mode quickly and efficiently.


1976 ◽  
Vol 16 (74) ◽  
pp. 278-279
Author(s):  
Garry K.C. Clarke

Abstract The equation governing the growth or decay of a temperature perturbation T’ in an ice slab under shear stress σ xy is where K and k are respectively the thermal conductivity and diffusivity of ice, KB-v is the advection velocity normal to the bed and is the rate of increase of strain heating with temperature assuming a power law for flow. For a slab of infinite thickness under constant stress and at constant ambient temperature, T Fourier analysis gives -k2+a/k < o as the condition for stability where k is the wave number of a sinusoidal perturbation. When the slab has finite thickness the stability depends on the sign of the eigenvalues λm of the perturbation equation and on the boundary condition at the ice-rock interface. In general the eigenfunctions and eigenvalues must be found by approximate methods such as the Rayleigh-Ritz procedure but in the case where the stress and ambient temperature are constant over the slab thickness and there is no advection the eigenfunctions are either sines or cosines depending on the boundary conditions. In this special case the stability condition is if the bed is frozen and if it is at the melting point. The eigenvalue associated with the smallest value of m is the least stable so the maximum stable thickness is thus h = ½ π(a/K)1/2 if the bed is frozen or h = π (a/K)1/2 if it is at the melting point. For typical flow-law parameters these depths are around 250 m and 500 m respectively. The eigenvalues are related in a simple way to the growth or decay rates of the eigenfunctions: (K λm)–1 is the time constant for the mth eigenfunction. Depth-dependent stress, temperature, and advection have a marked effect on stability. A slab in which stress and temperature increase to values B and T B at the bed is considerably more stable than a slab held at constant stressσB and a constant temperature T B. Advection normal to the bed also has a major influence on stability. If the advection velocity is taken to vary linearly with depth and the bed is frozen, the effect of upward advection is to decrease stability and of downward advection to increase it. When the bed is temperate the effect of advection is more complex: downward advection increases stability but upward advection may increase or decrease it depending on the magnitude of the advection velocity.


2014 ◽  
Vol 10 (3) ◽  
pp. 449-471
Author(s):  
Rajneesh Kumar ◽  
Krishan Kumar ◽  
Ravindra Chandra Nautiyal

Purpose – The purpose of this paper is to investigate the two-dimensional problem in couple stress thermoelastic medium for a half space is established and state space approach has been applied to solve the problem. Design/methodology/approach – Normal mode analysis is used to obtain the exact expressions for normal stress, tangential stress and couple stress. Numerical calculation is prepared for these quantities and depicted graphically for a special model. Findings – The expressions for normal stress, tangential stress and couple stress are obtained numerically and depicted graphically to see the couple stress effect. Originality/value – It is found that couple stress effect decrease the value of normal stress components for circular frequency equal to 0.5 for small values of the wave number and then increases whereas the values of normal stress components decrease first and then increase monotonically for circular frequency equal to 0.1 when the force is applied in normal direction and the values of tangential stress components and couple stress components decrease for all values of wave number. But the values for normal stress components, tangential stress components and couple stress components increase when the force is applied in tangential direction.


Sign in / Sign up

Export Citation Format

Share Document