An Approach to Seam Strength Prediction Using Residual Thread Strength

2011 ◽  
Vol 15 (3) ◽  
pp. 75-85 ◽  
Author(s):  
Vinay Kumar Midha ◽  
A Mukhopadhyay ◽  
Ramanpreet Kaur

Owing to a high amount of stress, seam failure in workwear fabrics makes the fabric unsuitable although the fabric strength is high. It is therefore important to predict the seam strength to ascertain the performance of the garments during use and determine the required thread strength and stitch density to match the required seam strength. In all of the earlier predictive equations, seam strength is predicted from thread strength and stitch density along with some multiplicative factors. During the sewing process, a substantial loss in needle thread strength occurs; therefore, the thread becomes weaker than expected after incorporation into the seam. In this paper, the effects of various machine and process parameters are studied on thread strength loss and seam strength. The seam strength is predicted from the loop strength after considering the loss in thread strength. It is observed that higher seam strengths are observed when stronger threads are used for sewing. Loss in thread strength has a significant influence on the seam strength. Seam strength can be predicted using stitch density and thread loop strength, by considering the loss in thread strength during the sewing process. A closer match between predicted and experimental seam strength is possible.

2010 ◽  
Vol 5 (1) ◽  
pp. 155892501000500 ◽  
Author(s):  
Vinay Kumar Midha ◽  
V. K. Kothari ◽  
R. Chattopadhyay ◽  
A. Mukhopadhyay

During sewing at high speed, the needle thread is subjected to repeated tensile stresses, heat, bending, pressure, torsion and wearing. These stresses act on the thread repeatedly and the thread passes 50–80 times through the fabric, the needle eye and the bobbin case mechanism, before getting incorporated into the seam. As a result both the sewing thread and the yarns in the fabric get abraded/ severed during the seaming process. A number of researchers observed that there could be 30% to 40% strength loss in the cotton needle thread after sewing. The extent of damage becomes more critical if the fabric being used is of a dense, thick and heavy construction. A number of studies have been carried out on thread strength loss after sewing, but the impact of fabric characteristics on thread strength loss is still unexplored. In this paper, the effect of weight and fabric composition of workwear fabrics, on the changes in the tenacity, breaking elongation and initial modulus of the needle thread has been studied. The tenacity and breaking elongation loss increase with increase in fabric weight for staple threads and remain unchanged for core spun threads. The loss in initial modulus increases for polyester threads as fabric weight increases, and decreases for cotton thread. When sewn on polyester-cotton fabric of same weight, the cotton thread shows decrease in tenacity and breaking elongation loss, whereas loss in initial modulus increases. The polyester core spun threads show exactly opposite change, i.e. tenacity and elongation loss increase and loss in initial modulus decreases when sewn on polyester-cotton fabric.


2011 ◽  
Vol 331 ◽  
pp. 261-264 ◽  
Author(s):  
Qi Ming Zhao ◽  
Shan Yan Zhang

The auxiliary devices of ultrasonic treatment was designed and manufactured. The cotton fabric was desized using 2000L desizing enzyme with the conventional enzyme desizing process and ultrasonic enzyme desizing process respectively. Through the orthogonal experiment, the optimum process conditions of conventional enzyme desizing process and ultrasonic enzyme desizing process were determined. For the conventional enzyme desizing process, the optimized desizing conditions of cotton fabrics were: desizing enzyme dosage was 1.5g/l, temperature was 80°C, PH value was 6, and time was 60mins. The optimum process conditions of ultrasonic enzyme desizing process were: desizing enzyme dosage was 1.5g/l, temperature was 50°C, PH value was 6 and time was 45minutes. The research result indicates that, under the same desizing condition, ultrasonication can improve the desizing percentage and whiteness of cotton fabric, but the fabric strength loss increases slightly. And for the same required desizing percentage, the ultrasonic enzyme desizing process saved time and reduced the temperature of experiments compared with traditional enzyme desizing process


2014 ◽  
Vol 223 ◽  
pp. 191-198 ◽  
Author(s):  
Tomasz Kozior

The article describes the technology of making thin-walled components and elastic by additive technology SLS using a polyamide powder PA 2200. The characteristics of the selected elements and the results of their strength tests are presented. The research focuses on the anisotropy of the materials in the various models. Printing processes were investigated on surfaces perpendicular and parallel to the axis of the model. Based on measurements of deformation, coefficients of elasticity, and the influence of selected parameters of the printing process, the accuracy of tested elements were determined. Comparing results of the research indicated that there is a significant influence of direction and printing process parameters on elastic properties. Research can be helpful in the future in the design process of elastic and thin-walled components such as springs and bellows.


Author(s):  
Madderla Sandhya ◽  
D. Ramasamy ◽  
Irshad ahamad Khilji ◽  
Anil Kumar ◽  
S. Chandramouli ◽  
...  

This project aims to investigate and predict the optimal choice for each EDM parameter using Taguchi Method by conducting a limited number of experiments on “Nimonic” Material. These parameters have a significant influence on the machining characteristics like MRR and TWR. Taguchi design of experiments (DOE) are implemented, particularly L9 orthogonal array is chosen and the effect of dominating process parameters is evaluated using analysis of variance. Nimonic refers to a family of Nickel-based high-temperature low creep superalloys. Due to its ability to withstand very high temperatures, Nimonic is ideal for typical applications such as aircraft parts, gas turbine components and blades, exhaust nozzles etc., for instance, where the pressure and heat are extreme. However, the conventional methods are not suitable to machine the hardest material such as Nimonic superalloy. The EDM, one of the popular unconventional machining methods, is used to the machine with a copper electrode, which in turn uses Taguchi methodology to analyze the effect of each parameter on the machining characteristics. The optimal choice for each EDM parameter such as peak current, gap voltage, duty cycle and pulse on time using the Taguchi method and Genetic Algorithm are identified. These parameters have a significant influence on machining characteristics such as MRR, EWR and surface roughness.


2021 ◽  
Author(s):  
Md. Shamsuzzaman

Abstract Seam performance ensures the durability, attractiveness, strength etc. of the sewn garments. Fabric types, fabric densities, fabric strength, seam types, sewing thread count, thread strength, stitch densities and stitch types influence the performance of a sewn seam. This paper investigates the performance of sewn seam of various structure of woven fabric. The variables of this research are stitch densities (SPI), sewing thread count, seam types and woven structures. We conduct our research over plain, twill 2/1, twill 2/2, oxford and poplin woven structure. Firstly, we apply lockstitch (301) to produce superimposed, lapped and bound seam on the woven sample by using thread count 27 Tex, 30 Tex, 20/2 Tex, 40 Tex, 40/2 Tex, 40/3 Tex having stitch densities (SPI) 8, 10 and 12. Then according to ASTM D1683 standard, we measured the tensile strength test and recorded the seam breaking strength (N). We apply error bars over each diagram to investigate the standard deviation. Finally, we discuss four hypothesis to conclude our research work. We found higher seam breaking strength with the increase of thread count and SPI. The bound seam samples has shown superior seam breaking strength than superimposed and lapped seam; poplin structure surpassed to others. The seam efficiency of the samples varies from 60–90% and do not exceeds 100%. Finally, we found some significant alternatives hypothesis of the population since F values exceeded F critical values for the sewn seam.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5129
Author(s):  
Abhilash Kiran ◽  
Martina Koukolíková ◽  
Jaroslav Vavřík ◽  
Miroslav Urbánek ◽  
Jan Džugan

The microstructural morphology in additive manufacturing (AM) has a significant influence on the building structure. High-energy concentric heat source scanning leads to rapid heating and cooling during material deposition. This results in a unique microstructure. The size and morphology of the microstructure have a strong directionality, which depends on laser power, scanning rate, melt pool fluid dynamics, and material thermal properties, etc. The grain structure significantly affects its resistance to solidification cracking and mechanical properties. Microstructure control is challenging for AM considering multiple process parameters. A preheating base plate has a significant influence on residual stress, defect-free AM structure, and it also minimizes thermal mismatch during the deposition. In the present work, a simple single track deposition experiment was designed to analyze base plate preheating on microstructure. The microstructural evolution at different preheating temperatures was studied in detail, keeping process parameters constant. The base plate was heated uniformly from an external heating source and set the stable desired temperature on the surface of the base plate before deposition. A single track was deposited on the base plate at room temperature and preheating temperatures of 200 °C, 300 °C, 400 °C, and 500 °C. Subsequently, the resulting microstructural morphologies were analyzed and compared. The microstructure was evaluated using electron backscattered diffraction (EBSD) imaging in the transverse and longitudinal sections. An increase in grain size area fraction was observed as the preheating temperature increased. Base plate preheating did not show influence on grain boundary misorientation. An increase in the deposition depth was noticed for higher base plate preheating temperatures. The results were convincing that grain morphology and columnar grain orientation can be tailored by base plate preheating.


2020 ◽  
Vol 14 (4) ◽  
pp. 7389-7395
Author(s):  
H. Ahmad ◽  
K. Supar

Application of woven fabric kenaf fibers in production of polymeric composites (known as woven fabric kenaf reinforced composite (WKRP)) were readily available in the literatures due to excellent tensile strength and elongation at break. Nevertheless, there are less reported work and information regarding to performance of these materials in bolted joints problem. Bolted joints demonstrate complicated damage morphologies either net-tension, shear-out or bearing failure modes dependence upon combination arrays of lay-up/joint variables. XFEM approach has been reported in the literature, yet the agreements are limited to net-tension failure resulting from stress concentration problem. The aim of this paper to carry out strength prediction work of single-lap WKRP/aluminium bolted joints by using Hashin formulation within 3D finite element framework. Hashin formulation which based on ply-by-ply basis seen to perform better prediction to bearing failure modes. The material properties incorporated within Hashin formulation was taken from a single-ply of woven fabric. Strength prediction from Hashin formulation showed a difference of less than ±25% in net tension-bearing failure mode, but less good predictions (some lay-up showed discrepancies of 50%) in smaller W/d to give net-tension mode. Good prediction in net-tension-bearing failure were exhibited in Hashin formulation than XFEM approach as bearing failure is based on ply-by-ply basis due to fiber kinking and matrix compression.


2017 ◽  
Vol 21 (4) ◽  
pp. 293-306
Author(s):  
Mallika Datta ◽  
Devarun Nath ◽  
Asif Javed ◽  
Nabab Hossain

Purpose The focus of this research is to identify the optimum commercial grade sewing thread and stitch density to be used with woven linen shirting fabric used in making men’s formal shirt. Maximum seam efficiency and interaction between the process parameters were assessed. Design/methodology/approach The classical method of optimisation involves varying one variable at a time and keeping the others constant. This is often useful, but it does not explain the effect of interaction between the variables under consideration. In this study, the response surface methodology was used for securing a more accurate optimisation of seam quality (seam efficiency) of woven linen shirting fabric. The response surface method is an empirical statistical technique used for multiple regression analysis of quantitative data obtained from statistically designed experiments by solving the multivariate equations simultaneously. Through this system, the input level of each process parameter, i.e. variable and the level of the selected response (seam efficiency), can be quantified. The central composite, Box–Behnken, is the common design used here. Findings The maximum seam efficiency is 79.62 per cent and 83.13 per cent in warp and weft direction, respectively, with optimum areal density (G) of 110 g/m2 of woven linen shirting fabric. The most suitable stitch density and ticket number of commercial grade sewing thread for woven linen shirting fabric are 13-13.5 and 40, respectively. Practical implications This study could help apparel manufacturers to evaluate seam quality, i.e. seam efficiency of woven linen fabric for men’s shirting, more effectively from the proposed regression model. The optimisation of the commercial grade sewing thread size and stitch density used in this study for woven linen shirting fabric within the range of 110-150 g/m2 will facilitate apparel engineers in production planning and quality control. Originality/value There is dearth of research on seam quality for woven linen shirting fabric using commercial grade sewing thread and engineering of prediction regression model for the estimation of seam efficiency by using process parameters, namely, fabric G, thread size and thread density and their interaction.


2012 ◽  
Vol 602-604 ◽  
pp. 908-912
Author(s):  
Ji Ming Yao ◽  
Sai Nan Wei

Severe strength loss is the most important problem for denim wrinkle-setting resin finishing. N,N-dimethylol 4,5-dihydroxy- ethylene urea (DMDHEU) resin、composite catalyst, baking time and temperature were used as four important factors in experimental design by central lab. The significant influence and the optimum condition achieved by analysis four factors and regression analysis. In contrast to traditional catalyst magnesium chloride, under optimum condition employed by composite catalyst 20.61(g/L), resin 143.08(g/L), baked at 129.4°C for 18.0 min, the strength loss of treated fabric reduced by more than 12%.


Sign in / Sign up

Export Citation Format

Share Document