Bond and part strength in fused deposition modeling

2017 ◽  
Vol 23 (2) ◽  
pp. 414-422 ◽  
Author(s):  
Timothy J. Coogan ◽  
David Owen Kazmer

Purpose The purpose of this paper is to investigate the factors governing bond strength in fused deposition modeling (FDM) compared to strength in the fiber direction. Design/methodology/approach Acrylonitrile butadiene styrene (ABS) boxes with the thickness of a single fiber were made at different platform and nozzle temperatures, print speeds, fiber widths and layer heights to produce multiple specimens for measuring the strength. Findings Specimens produced with the fibers oriented in the tensile direction had 95 per cent of the strength of the constitutive filament. Bond strengths ranged from 40 to 85 per cent of the filament strength dependent on the FDM processing conditions. Diffusion, wetting and intimate contact all separately affect bond strength. Practical implications This study provides processing recommendations for producing the strongest FDM parts. The needs for higher nozzle temperatures and more robust feed motors are described; these recommendations can be useful for companies producing FDM products as well as companies designing FDM printers. Originality/value This is the first study that discusses wetting and intimate contact separately in FDM, and the results suggest that a fundamental, non-empirical model for predicting FDM bond strength can be developed based on healing models. Additionally, the role of equilibration time at the start of extrusion as well as a motor torque limitation while trying to print at high speeds are described.

2017 ◽  
Vol 23 (3) ◽  
pp. 551-561 ◽  
Author(s):  
Timothy J. Coogan ◽  
David O. Kazmer

Purpose The purpose of this paper is to present a diffusion-controlled healing model for predicting fused deposition modeling (FDM) bond strength between layers (z-axis strength). Design/methodology/approach Diffusion across layers of an FDM part was predicted based on a one-dimensional transient heat analysis of the interlayer interface using a temperature-dependent diffusion model determined from rheological data. Integrating the diffusion coefficient across the temperature history with respect to time provided the total diffusion used to predict the bond strength, which was compared to the measured bond strength of hollow acrylonitrile butadiene styr (ABS) boxes printed at various processing conditions. Findings The simulated bond strengths predicted the measured bond strengths with a coefficient of determination of 0.795. The total diffusion between FDM layers was shown to be a strong determinant of bond strength and can be similarly applied for other materials. Research limitations/implications Results and analysis from this paper should be used to accurately model and predict bond strength. Such models are useful for FDM part design and process control. Originality/value This paper is the first work that has predicted the amount of polymer diffusion that occurs across FDM layers during the printing process, using only rheological material properties and processing parameters.


2021 ◽  
Vol 11 (3) ◽  
pp. 1272
Author(s):  
Bartłomiej Podsiadły ◽  
Piotr Matuszewski ◽  
Andrzej Skalski ◽  
Marcin Słoma

In this publication, we describe the process of fabrication and the analysis of the properties of nanocomposite filaments based on carbon nanotubes and acrylonitrile butadiene styrene (ABS) polymer for fused deposition modeling (FDM) additive manufacturing. Polymer granulate was mixed and extruded with a filling fraction of 0.99, 1.96, 4.76, 9.09 wt.% of CNTs (carbon nanotubes) to fabricate composite filaments with a diameter of 1.75 mm. Detailed mechanical and electrical investigations of printed test samples were performed. The results demonstrate that CNT content has a significant influence on mechanical properties and electrical conductivity of printed samples. Printed samples obtained from high CNT content composites exhibited an improvement in the tensile strength by 12.6%. Measurements of nanocomposites’ electrical properties exhibited non-linear relation between the supply voltage and measured sample resistivity. This effect can be attributed to the semiconductor nature of the CNT functional phase and the occurrence of a tunnelling effect in percolation network. Detailed I–V characteristics related to the amount of CNTs in the composite and the supply voltage influence are also presented. At a constant voltage value, the average resistivity of the printed elements is 2.5 Ωm for 4.76 wt.% CNT and 0.15 Ωm for 9.09 wt.% CNT, respectively. These results demonstrate that ABS/CNT composites are a promising functional material for FDM additive fabrication of structural elements, but also structural electronics and sensors.


2017 ◽  
Vol 23 (4) ◽  
pp. 804-810 ◽  
Author(s):  
Shiqing Cao ◽  
Dandan Yu ◽  
Weilan Xue ◽  
Zuoxiang Zeng ◽  
Wanyu Zhu

Purpose The purpose of this paper is to prepare a new modified polybutylene terephalate (MPBT) for fused deposition modeling (FDM) to increase the variety of materials compatible with printing. And the printing materials can be used to print components with a complex structure and functional mechanical parts. Design/methodology/approach The MPBT, poly(butylene terephalate-co-isophthalate-co-sebacate) (PBTIS), was prepared for FDM by direct esterification and subsequent polycondensation using terephthalic acid (PTA), isophthalic acid (PIA), sebacic acid (SA) and 1,4-butanediol (BDO). The effects of the content of PIA (20-40 mol%) on the mechanical properties of PBTIS were investigated when the mole per cent of SA (αSA) is zero. The effects of αSA (0-7mol%) on the thermal, rheological and mechanical properties of PBTIS were investigated at nPTA/nPIA = 7/3. A desktop wire drawing and extruding machine was used to fabricate the filaments, whose printability and anisotropy were tested by three-dimensional (3D) printing experiments. Findings A candidate content of PIA introducing into PBT was obtained to be about 30 per cent, and the Izod notched impact strength of PBTIS increased with the increase of αSA. The results showed that the PBTIS (nPTA/nPIA = 7/3, αSA = 3-5mol%) is suitable for FDM. Originality/value New printing materials with good Izod notched impact strength were obtained by introducing PIA and SA (nPTA/nPIA = 7/3, αSA = 3-5 mol%) into PBT and their anisotropy are better than that of ABS.


2021 ◽  
Vol 896 ◽  
pp. 29-37
Author(s):  
Ján Milde ◽  
František Jurina ◽  
Jozef Peterka ◽  
Patrik Dobrovszký ◽  
Jakub Hrbál ◽  
...  

The article focused on the influence of part orientation on the surface roughness of cuboid parts during the process of fabricating by FDM technology. The components, in this case, is simple cuboid part with the dimensions 15 mm x 15mm x 30 mm. A geometrical model is defined that considers the shape of the material filaments after deposition, to define a theoretical roughness profile, for a certain print orientation angle. Five different print orientations in the X-axis of the cuboid part were set: 0°, 30°, 45°, 60°, and 90°. According to previous research in the field of FDM technology by the author, the internal structure (infill) was set at the value of 70%. The method of 3D printing was the Fused Deposition Modeling (FDM) and the material used in this research was thermoplastic ABS (Acrylonitrile butadiene styrene). For each setting, there were five specimens (twenty five prints in total). Prints were fabricated on a Zortrax M200 3D printer. After the 3D printing, the surface “A” was investigated by portable surface roughness tester Mitutoyo SJ-210. Surface roughness in the article is shown in the form of graphs (Fig.7). Results show increase in part roughness with increasing degree of part orientation. When the direction of applied layers on the measured surface was horizontal, significant improvement in surface roughness was observed. Findings in this paper can be taken into consideration when designing parts, as they can contribute in achieving lower surface roughness values.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Iman Sedighi ◽  
Majid R. Ayatollahi ◽  
Bahador Bahrami ◽  
Marco A. Pérez-Martínez ◽  
Andrés A. Garcia-Granada

Purpose The purpose of this paper is to study the Mode I fracture behavior of polycarbonate (PC) parts produced using fused deposition modeling (FDM). The focus of this study is on samples printed along the out-of-plane direction with different raster angles. Design/methodology/approach Tensile and Mode I fracture tests were conducted. Semi-circular bend specimens were used for the fracture tests, which were printed in four different raster patterns of (0/90), (15/−75) (30/−60) and (45/−45). Moreover, the finite element method (FEM) was used to determine the applicability of linear elastic fracture mechanics (LEFM) for the printed PC parts. The fracture toughness results, as well as the fracture path and the fracture surfaces, were studied to describe the fracture behavior of the samples. Findings Finite element results confirm that the use of LEFM is allowed for the tested PC samples. The fracture toughness results show that changing the direction of the printed rasters can have an effect of up to 50% on the fracture toughness of the printed parts, with the (+45/−45) and (0/90) orientations having the highest and lowest resistance to crack propagation, respectively. Moreover, except for the (0/90) orientation, the other samples have higher crack resistance compared to the bulk material. The fracture toughness of the tested PC depends more on the toughness of the printed sample, rather than its tensile strength. Originality/value The toughness and the energy absorption capability of the printed samples (with different raster patterns) were identified as the main properties affecting the fracture toughness of the AM PC parts. Because the fracture resistance of almost all the samples was higher than that of the base material, it is evident that by choosing the right raster patterns for 3D-printed parts, very high resistance to crack growth may be obtained. Also, using FEM and comparing the size of the plastic zones, it was concluded that, although the tensile curves show nonlinearity, LEFM is still applicable for the printed parts.


2019 ◽  
Vol 25 (5) ◽  
pp. 875-887
Author(s):  
Elnaz Asadollahi-Yazdi ◽  
Julien Gardan ◽  
Pascal Lafon

Purpose This paper aims to provide a multi-objective optimization problem in design for manufacturing (DFM) approach for fused deposition modeling (FDM). This method considers the manufacturing criteria and constraints during the design by selecting the best manufacturing parameters to guide the designer and manufacturer in fabrication with FDM. Design/methodology/approach Topological optimization and bi-objective optimization problems are suggested to complete the DFM approach for design for additive manufacturing (DFAM) to define a product. Topological optimization allows the shape improvement of the product through a material distribution for weight gain based on the desired mechanical behavior. The bi-objective optimization problem plays an important role to evaluate the manufacturability by quantification and optimization of the manufacturing criteria and constraint simultaneously. Actually, it optimizes the production time, required material regarding surface quality and mechanical properties of the product because of two significant parameters as layer thickness and part orientation. Findings A comprehensive analysis of the existing DFAM approaches illustrates that these approaches are not developed sufficiently in terms of manufacturability evaluation in quantification and optimization levels. There is no approach that investigates the AM criteria and constraints simultaneously. It is necessary to provide a decision-making tool for the designers and manufacturers to lead to better design and manufacturing regarding the different AM characteristics. Practical implications To assess the efficiency of this approach, a wheel spindle is considered as a case study which shows how this method is capable to find the best design and manufacturing solutions. Originality/value A multi-criteria decision-making approach as the main contribution is developed to analyze FDM technology and its attributes, criteria and drawbacks. It completes the DFAM approach for FDM through a bi-objective optimization problem which deals with finding the best manufacturing parameters by optimizing production time and material mass because of the product mechanical properties and surface roughness.


2019 ◽  
Vol 25 (3) ◽  
pp. 462-472 ◽  
Author(s):  
Oluwakayode Bamiduro ◽  
Gbadebo Owolabi ◽  
Mulugeta A. Haile ◽  
Jaret C. Riddick

Purpose The continual growth of additive manufacturing has increased tremendously because of its versatility, flexibility and high customization of geometric structures. However, design hurdles are presented in understanding the relationship between the fabrication process and materials microstructure as it relates to the mechanical performance. The purpose of this paper is to investigate the role of build architecture and microstructure and the effects of load direction on the static response and mechanical properties of acrylonitrile butadiene styrene (ABS) specimens obtained via the fused deposition modeling (FDM) processing technique. Design/methodology/approach Among additive manufacturing processes, FDM is a prolific technology for manufacturing ABS. The blend of ABS combines strength, rigidity and toughness, all of which are desirable for the production of structural materials in rapid manufacturing applications. However, reported literature has varied widely on the mechanical performance due to the proprietary nature of the ABS material ratio, ultimately creating a design hurdle. While prior experimental studies have studied the mechanical response via uniaxial tension testing, this study has aimed to understand the mechanical response of ABS from the materials’ microstructural point of view. First, ABS specimen was fabricated via FDM using a defined build architecture. Next, the specimens were mechanically tested until failure. Then finally, the failure structures were microstructurally investigated. In this paper, the effects of microstructural evolution on the static mechanical response of various build architecture of ABS aimed at FDM manufacturing technique was analyzed. Findings The results show that the rastering orientation of 0/90 exhibited the highest tensile strength followed by fracture at its maximum load. However, the “45” bead direction of the ABS fibers displayed a cold-drawing behavior before rupture. The morphology analyses before and after tensile failure were characterized by a scanning electron microscopy (SEM) which highlighted the effects of bead geometry (layers) and areas of stress concentration such as interstitial voids in the material during build, ultimately compromising the structural integrity of the specimens. Research limitations/implications The ability to control the constituents and microstructure of a material during fabrication is significant to improving and predicting the mechanical performance of structural additive manufacturing components. In this report, the effects of microstructure on the mechanical performance of FDM-fabricated ABS materials was discussed. Further investigations are planned in understanding the effects of ambient environmental conditions (such as moisture) on the ABS material pre- and post-fabrication. Originality/value The study provides valuable experimental data for the purpose of understanding the inter-dependency between build parameters and microstructure as it relates to the specimens exemplified strength. The results highlighted in this study are fundamental to the development of optimal design of strength and complex ultra-lightweight structure efficiency.


2019 ◽  
Vol 25 (3) ◽  
pp. 541-554 ◽  
Author(s):  
Antonio Armillotta

Purpose The purpose of this paper is to propose a method for simulating the profile of part edges as a result of the FDM process. Deviations from nominal edge shape are predicted as a function of the layer thickness and three characteristic angles depending on part geometry and build orientation. Design/methodology/approach Typical patterns of edge profiles were observed on sample FDM parts and interpreted as the effects of possible toolpath generation strategies. An algorithm was developed to generate edge profiles consistent with the patterns expected for any combination of input variables. Findings Experimental tests confirmed that the simulation procedure can correctly predict basic geometric properties of edge profiles such as frequency, amplitude and shape of periodic asperities. Research limitations/implications The algorithm takes into account only a subset of the error causes recognized in previous studies. Additional causes could be integrated in the simulation to improve the estimation of geometric errors. Practical implications Edge simulation may help avoid process choices that result in aesthetic and functional defects on FDM parts. Originality/value Compared to the statistical estimation of geometric errors, graphical simulation allows a more detailed characterization of edge quality and a better diagnosis of error causes.


Author(s):  
SIVADASAN M ◽  
N.K SINGH ◽  
ANOOP KUMAR SOOD

Investment Castings (IC) is one of the most economical ways to produce intricate metallic parts when forging, forming and other casting processes tend to fail. However, high tooling cost and long lead time associated with the fabrication of metal moulds for producing IC wax (sacrificial) patterns result in cost justification problems for customized single casting or small-lot production. Generating pattern using rapid prototyping (RP) process may be one of the feasible alternatives. For this purpose present study assessed the suitability of the fused deposition modeling (FDM) process for creating sacrificial IC patterns by studying FDM fabricated part thermal response at various temperatures. A series of experiments with RP patterns are conducted and a set of test castings are also made in steel for establishing feasibility. The build material used is acrylonitrile butadiene styrene (ABS). As an annexe to this work a concurrent attempt is also made to quantify the risk in using Selective Laser Sintering patterns for Investment Castings. Authors hope this work might establish applicability of ABS in IC and also lead the investigations to theoretically tone down the shell cracking tendency with Selective Laser Sintering patterns when Proprietary Duraform is used as the build material.


Sign in / Sign up

Export Citation Format

Share Document