3D bioprinting of tissue engineering scaffold for cell culture

2020 ◽  
Vol 26 (5) ◽  
pp. 835-840
Author(s):  
Li Wu ◽  
Xinxin Li ◽  
Tianmin Guan ◽  
Yong Chen ◽  
Chunwei Qi

Purpose The 3 D bioprinting technology is used to prepare the tissue engineering scaffold with precise structures for the cell proliferation and differentiation. Design/methodology/approach According to the characteristics of the ideal tissue engineering scaffold, the microstructural design of the tissue engineering scaffold is carried out. The bioprinter is used to fabricate the tissue engineering scaffold with different structures and spacing sizes. Finally, the scaffold with good connectivity is achieved and used to cell PC12 culture. Findings The results show that the pore structure with the line spacing of 1 mm was the best for cell culture, and the survival rate of the inoculated cells PC12 is as high as 90%. The influence of the pore shape on the cell survival is not evidence. Originality/value This study shows that tissue engineering scaffolds prepared by 3 D bioprinting have graded structure for three-dimensional cell culture, which lays the foundation for the later detection of drug resistance.

2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Ru Dai ◽  
Zongjie Wang ◽  
Roya Samanipour ◽  
Kyo-in Koo ◽  
Keekyoung Kim

Adipose-derived stem cells (ASCs) are a mesenchymal stem cell source with properties of self-renewal and multipotential differentiation. Compared to bone marrow-derived stem cells (BMSCs), ASCs can be derived from more sources and are harvested more easily. Three-dimensional (3D) tissue engineering scaffolds are better able to mimic thein vivocellular microenvironment, which benefits the localization, attachment, proliferation, and differentiation of ASCs. Therefore, tissue-engineered ASCs are recognized as an attractive substitute for tissue and organ transplantation. In this paper, we review the characteristics of ASCs, as well as the biomaterials and tissue engineering methods used to proliferate and differentiate ASCs in a 3D environment. Clinical applications of tissue-engineered ASCs are also discussed to reveal the potential and feasibility of using tissue-engineered ASCs in regenerative medicine.


2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


2011 ◽  
Vol 17 (21-22) ◽  
pp. 2583-2592 ◽  
Author(s):  
Jessica A. DeQuach ◽  
Shauna H. Yuan ◽  
Lawrence S.B. Goldstein ◽  
Karen L. Christman

2001 ◽  
Vol 25 (3) ◽  
pp. 213-217 ◽  
Author(s):  
Hiroshi Itoh ◽  
Yu Aso ◽  
Masayasu Furuse ◽  
Yasuharu Noishiki ◽  
Teruo Miyata

Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 272 ◽  
Author(s):  
Patricia Diaz-Rodriguez ◽  
Mirian Sánchez ◽  
Mariana Landin

The mimesis of biological systems has been demonstrated to be an adequate approach to obtain tissue engineering scaffolds able to promote cell attachment, proliferation, and differentiation abilities similar to those of autologous tissues. Bioceramics are commonly used for this purpose due to their similarities to the mineral component of hard tissues as bone. Furthermore, biomimetic scaffolds are frequently loaded with diverse therapeutic molecules to enhance their biological performance, leading to final products with advanced functionalities. In this review, we aim to describe the already developed bioceramic-based biomimetic systems for drug loading and local controlled release. We will discuss the mechanisms used for the inclusion of therapeutic molecules on the designed systems, paying special attention to the identification of critical parameters that modulate drug loading and release kinetics on these scaffolds.


2006 ◽  
Vol 18 (2) ◽  
pp. 165-169 ◽  
Author(s):  
C. J. Bettinger ◽  
E. J. Weinberg ◽  
K. M. Kulig ◽  
J. P. Vacanti ◽  
Y. Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document