scholarly journals Spatial and Spatio-Temporal Error Correction, Networks and Common Correlated Effects

2022 ◽  
pp. 37-60
Author(s):  
Arnab Bhattacharjee ◽  
Jan Ditzen ◽  
Sean Holly
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Vasudeva N. R. Murthy ◽  
Natalya Ketenci

AbstractThis study investigates the degree of capital mobility in a panel of 16 Latin American and 4 Caribbean countries during 1960 to 2017 against the backdrop of the Feldstein-Horioka hypothesis by applying recent panel data techniques. This is the first study on capital mobility in Latin American and Caribbean countries to employ the recently developed panel data procedure of the dynamic common correlated effects modeling technique of Chudik and Pesaran (J Econ 188:393–420, 2015) and the error-correction testing of Gengenbach, Urbain, and Westerlund (Panel error correction testing with global stochastic trends, 2008, J Appl Econ 31:982–1004, 2016). These approaches address the serious panel data econometric issues of cross-section dependence, slope heterogeneity, nonstationarity, and endogeneity in a multifactor error-structure framework. The empirical findings of this study reveal a low average (mean) savings–retention coefficient for the panel as a whole and for most individual countries, as well as indicating a cointegration relationship between saving and investment ratios. The results indicate that there is a relatively high degree of capital mobility in the Latin American and Caribbean countries in the short run, while the long-run solvency condition is maintained, which is due to reduced frictions in goods and services markets causing increase competition. Increased capital mobility in these countries can promote economic growth and hasten the process of globalization by creating a conducive economic environment for FDI in these countries.


2019 ◽  
Vol 11 (19) ◽  
pp. 2261 ◽  
Author(s):  
Jing ◽  
Shen ◽  
Li ◽  
Guan

The Tibetan Plateau (TP) is an important component of the global environmental system, on which the snow cover greatly affects the regional climate and ecology. Moderate resolution imaging spectroradiometer (MODIS) snow cover products have been demonstrated to be appropriate for investigating the snow cover over the TP. However, they are subject to cloud obscuration, and the TP’s extremely complex terrain makes the snow monitoring difficult. Therefore, in this paper, we propose a two-stage spatio–temporal fusion framework for the cloud removal of MODIS C6 snow products, including an adjusted Terra and Aqua combination (TAC) and a spatio–temporal fusion based on Gaussian kernel function and error correction (STF-GKF-EC). To the best of our knowledge, this is the first time that a spatio–temporally continuous daily 500-m MODIS normalized difference snow index (NDSI) product has been generated for the TP, which greatly improves the spatial and temporal resolutions of the current snow cover products. The main stage, STF-GKF-EC, adaptively weights the spatial and temporal correlations by the Gaussian kernel function, and further takes the rapid changes of snow cover into consideration through the error correction. The experiments indicated that STF-GKF-EC removes clouds completely, achieving an overall accuracy (OA) and mean absolute error (MAE) of 91.48% and 3.88, respectively. Based on the cloud-removed results, during 2001–2017, as far as the intra-annual variation is concerned, a large proportion of the snow cover appears between October and May, with a peak in February/March, and the variation is mainly controlled by temperature. For the inter-annual variation, an obvious increasing trend of 0.68/year for NDSI is observed before 2005, followed by a slight decreasing trend of 0.16/year, in which precipitation is a better explanation factor than temperature.


2005 ◽  
Vol 41 ◽  
pp. 15-30 ◽  
Author(s):  
Helen C. Ardley ◽  
Philip A. Robinson

The selectivity of the ubiquitin–26 S proteasome system (UPS) for a particular substrate protein relies on the interaction between a ubiquitin-conjugating enzyme (E2, of which a cell contains relatively few) and a ubiquitin–protein ligase (E3, of which there are possibly hundreds). Post-translational modifications of the protein substrate, such as phosphorylation or hydroxylation, are often required prior to its selection. In this way, the precise spatio-temporal targeting and degradation of a given substrate can be achieved. The E3s are a large, diverse group of proteins, characterized by one of several defining motifs. These include a HECT (homologous to E6-associated protein C-terminus), RING (really interesting new gene) or U-box (a modified RING motif without the full complement of Zn2+-binding ligands) domain. Whereas HECT E3s have a direct role in catalysis during ubiquitination, RING and U-box E3s facilitate protein ubiquitination. These latter two E3 types act as adaptor-like molecules. They bring an E2 and a substrate into sufficiently close proximity to promote the substrate's ubiquitination. Although many RING-type E3s, such as MDM2 (murine double minute clone 2 oncoprotein) and c-Cbl, can apparently act alone, others are found as components of much larger multi-protein complexes, such as the anaphase-promoting complex. Taken together, these multifaceted properties and interactions enable E3s to provide a powerful, and specific, mechanism for protein clearance within all cells of eukaryotic organisms. The importance of E3s is highlighted by the number of normal cellular processes they regulate, and the number of diseases associated with their loss of function or inappropriate targeting.


2019 ◽  
Vol 47 (6) ◽  
pp. 1733-1747 ◽  
Author(s):  
Christina Klausen ◽  
Fabian Kaiser ◽  
Birthe Stüven ◽  
Jan N. Hansen ◽  
Dagmar Wachten

The second messenger 3′,5′-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.


Sign in / Sign up

Export Citation Format

Share Document