Prolonging network lifetime and optimizing energy consumption using swarm optimization in mobile wireless sensor networks

Sensor Review ◽  
2018 ◽  
Vol 38 (4) ◽  
pp. 534-541
Author(s):  
Sangeetha M. ◽  
Sabari A.

Purpose This paper aims to provide prolonging network lifetime and optimizing energy consumption in mobile wireless sensor networks (MWSNs). Forming clusters of mobile nodes is a great task owing to their dynamic nature. Such clustering has to be performed with a higher consumption of energy. Perhaps sensor nodes might be supplied with batteries that cannot be recharged or replaced while in the field of operation. One optimistic approach to handle the issue of energy consumption is an efficient way of cluster organization using the particle swarm optimization (PSO) technique. Design/methodology/approach In this paper two improved versions of centralized PSO, namely, unequal clustering PSO (UC-PSO) and hybrid K-means clustering PSO (KC-PSO), are proposed, with a focus of achieving various aspects of clustering parameters such as energy consumption, network lifetime and packet delivery ratio to achieve energy-efficient and reliable communication in MWSNs. Findings Theoretical analysis and simulation results show that improved PSO algorithms provide a balanced energy consumption among the cluster heads and increase the network lifetime effectively. Research limitations/implications In this work, each sensor node transmits and receives packets at same energy level only. In this work, focus was on centralized clustering only. Practical implications To validate the proposed swarm optimization algorithm, a simulation-based performance analysis has been carried out using NS-2. In each scenario, a given number of sensors are randomly deployed and performed in a monitored area. In this work, simulations were carried out in a 100 × 100 m2 network consisting 200 nodes by using a network simulator under various parameters. The coordinate of base station is assumed to be 50 × 175. The energy consumption due to communication is calculated using the first-order radio model. It is considered that all nodes have batteries with initial energy of 2 J, and the sensing range is fixed at 20 m. The transmission range of each node is up to 25 m and node mobility is set to 10 m/s. Practical implications This proposed work utilizes the swarm behaviors and targets the improvement of mobile nodes’ lifetime and energy consumption. Originality/value PSO algorithms have been implemented for dynamic sensor nodes, which optimize the clustering and CH selection in MWSNs. A new fitness function is evaluated to improve the network lifetime, energy consumption, cluster formation, packet transmissions and cluster head selection.

Sensor Review ◽  
2018 ◽  
Vol 38 (4) ◽  
pp. 526-533 ◽  
Author(s):  
Sangeetha M. ◽  
Sabari A.

Purpose This paper aims to provide a prolonging network lifetime and optimizing energy consumption in mobile wireless sensor networks (MWSNs). MWSNs have characteristics of dynamic topology due to the factors such as energy consumption and node movement that lead to create a problem in lifetime of the sensor network. Node clustering in wireless sensor networks (WSNs) helps in extending the network life time by reducing the nodes’ communication energy and balancing their remaining energy. It is necessary to have an effective clustering algorithm for adapting the topology changes and improve the network lifetime. Design/methodology/approach This work consists of two centralized dynamic genetic algorithm-constructed algorithms for achieving the objective in MWSNs. The first algorithm is based on improved Unequal Clustering-Genetic Algorithm, and the second algorithm is Hybrid K-means Clustering-Genetic Algorithm. Findings Simulation results show that improved genetic centralized clustering algorithm helps to find the good cluster configuration and number of cluster heads to limit the node energy consumption and enhance network lifetime. Research limitations/implications In this work, each node transmits and receives packets at the same energy level throughout the solution. The proposed approach was implemented in centralized clustering only. Practical implications The main reason for the research efforts and rapid development of MWSNs occupies a broad range of circumstances in military operations. Social implications The research highly gains impacts toward mobile-based applications. Originality/value A new fitness function is proposed to improve the network lifetime, energy consumption and packet transmissions of MWSNs.


2019 ◽  
Vol 8 (2) ◽  
pp. 2131-2135

Mobile Wireless Sensor Networks (MWSNs) have gained a lot of attention because of their applicability in different types of applications such as environment, healthcare, agriculture, industry automation, public safety, security and military surveillance. MWSNs are suffered from poor network lifetime because of the continuous disconnections between the mobile sensor nodes as they have limited battery power. This paper proposed and implement an adaptive algorithm(d-DSR) (implemented in DSR routing protocol) using ns-2.34,that handles the continuous disconnections because of low battery power of the mobile sensor nodes and improves the performance of the network in terms of throughput, packet delivery fraction, delay and network lifetime.


Author(s):  
K. Neeraja

In this paper author describing the concept of throughput and limited energy consumption while routing data to base station and will use multiple routes to forward data to base station. Wireless sensor networks (WSNs)remains resource constrict. Energy is one of the most essential resources in such networks. Hence, optimal use of energy is significant. In existing scheme sensor nodes are movable, base station is fixed and energy consumption is more. To overcome this, we are using the E2R2 protocol in which both sensor nodes & base station are mobile. The proposed protocol is hierarchical along with cluster based. All clusters contain one cluster head (CH) node, dual deputy CH nodes, also a few of ordinary sensor nodes. The reclustering time along with energy requirement has been decreases by introducing the concept of CH panel. All things Considered the reliability aspect of this protocol, it brings leading effort to provide a detailed throughput level by the BS. Topology of mobile wireless sensor networks with more no of nodes which is formed as clusters and transmission of packets between the sensor nodes is done to the base station [BS].Which is routed using E2R2 PROTOCOL, parameters such as throughput, energy spent. The simulation displays a certain proposed design successfully decreases the energy consumption among the nodes, and thus significantly improves the throughput compared to the existing protocol.


Author(s):  
Mohit Kumar ◽  
Sonu Mittal ◽  
Md. Amir Khusru Akhtar

Background: This paper presents a novel Energy Efficient Clustering and Routing Algorithm (EECRA) for WSN. It is a clustering-based algorithm that minimizes energy dissipation in wireless sensor networks. The proposed algorithm takes into consideration energy conservation of the nodes through its inherent architecture and load balancing technique. In the proposed algorithm the role of inter-cluster transmission is not performed by gateways instead a chosen member node of respective cluster is responsible for data forwarding to another cluster or directly to the sink. Our algorithm eases out the load of the gateways by distributing the transmission load among chosen sensor node which acts as a relay node for inter-cluster communication for that round. Grievous simulations show that EECRA is better than PBCA and other algorithms in terms of energy consumption per round and network lifetime. Objective: The objective of this research lies in its inherent architecture and load balancing technique. The sole purpose of this clustering-based algorithm is that it minimizes energy dissipation in wireless sensor networks. Method: This algorithm is tested with 100 sensor nodes and 10 gateways deployed in the target area of 300m × 300m. The round assumed in this simulation is same as in LEACH. The performance metrics used for comparisons are (a) network lifetime of gateways and (b) energy consumption per round by gateways. Our algorithm gives superior result compared to LBC, EELBCA and PBCA. Fig 6 and Fig 7 shows the comparison between the algorithms. Results: The simulation was performed on MATLAB version R2012b. The performance of EECRA is compared with some existing algorithms like PBCA, EELBCA and LBCA. The comparative analysis shows that the proposed algorithm outperforms the other existing algorithms in terms of network lifetime and energy consumption. Conclusion: The novelty of this algorithm lies in the fact that the gateways are not responsible for inter-cluster forwarding, instead some sensor nodes are chosen in every cluster based on some cost function and they act as a relay node for data forwarding. Note the algorithm does not address the hot-spot problem. Our next endeavor will be to design an algorithm with consideration of hot-spot problem.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jasleen Kaur ◽  
Punam Rani ◽  
Brahm Prakash Dahiya

Purpose This paper aim to find optimal cluster head and minimize energy wastage in WSNs. Wireless sensor networks (WSNs) have low power sensor nodes that quickly lose energy. Energy efficiency is most important factor in WSNs, as they incorporate limited sized batteries that would not be recharged or replaced. The energy possessed by the sensor nodes must be optimally used so as to increase the lifespan. The research is proposing hybrid artificial bee colony and glowworm swarm optimization [Hybrid artificial bee colony and glowworm swarm optimization (HABC-GSO)] algorithm to select the cluster heads. Previous research has considered fitness-based glowworm swarm with Fruitfly (FGF) algorithm, but existing research was limited to maximizing network lifetime and energy efficiency. Design/methodology/approach The proposed HABC-GSO algorithm selects global optima and improves convergence ratio. It also performs optimal cluster head selection by balancing between exploitation and exploration phases. The simulation is performed in MATLAB. Findings The HABC-GSO performance is evaluated with existing algorithms such as particle swarm optimization, GSO, Cuckoo Search, Group Search Ant Lion with Levy Flight, Fruitfly Optimization algorithm and grasshopper optimization algorithm, a new FGF in the terms of alive nodes, normalized energy, cluster head distance and delay. Originality/value This research work is original.


Author(s):  
Nandoori Srikanth ◽  
Muktyala Sivaganga Prasad

<p>Wireless Sensor Networks (WSNs) can extant the individual profits and suppleness with regard to low-power and economical quick deployment for numerous applications. WSNs are widely utilized in medical health care, environmental monitoring, emergencies and remote control areas. Introducing of mobile nodes in clusters is a traditional approach, to assemble the data from sensor nodes and forward to the Base station. Energy efficiency and lifetime improvements are key research areas from past few decades. In this research, to solve the energy limitation to upsurge the network lifetime, Energy efficient trust node based routing protocol is proposed. An experimental validation of framework is focused on Packet Delivery Ratio, network lifetime, throughput, energy consumption and network loss among all other challenges. This protocol assigns some high energy nodes as trusted nodes, and it decides the mobility of data collector.  The energy of mobile nodes, and sensor nodes can save up to a great extent by collecting data from trusted nodes based on their trustworthiness and energy efficiency.  The simulation outcome of our evaluation shows an improvement in all these parameters than existing clustering and Routing algorithms.<strong></strong></p>


Author(s):  
Ren Song

To avoid premature failure due to excessive energy consumption of some nodes in the network, the node energy consumption problem was considered. Network life was maximized. For the problem of node energy consumption, multiple methods such as the shortest path method, optimization method, and power control method were used to solve the problem of optimization of the survival time of the wireless sensor network in different scenarios and improve the network lifetime. The results showed that the sub-gradient algorithm could balance the node energy consumption and the number of neighbor nodes and extend the maximum network lifetime. Therefore, under certain conditions, the algorithm is better than the algorithm using fixed transmission power.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sasi B. Swapna ◽  
R. Santhosh

PurposeThe miniscule wireless sensor nodes, engaged in the wide range of applications for its capability of monitoring the physical changes around, requires an improved routing strategy with the befitting sensor node arrangement that plays a vital part in ensuring a completeness of the network coverage.Design/methodology/approachThis paves way for the reduced energy consumption, the enhanced network connections and network longevity. The conventional methods and the evolutionary algorithms developed for arranging of the node ended with the less effectiveness and early convergence with the local optimum respectively.FindingsThe paper puts forward the befitting arrangement of the sensor nodes, cluster-head selection and the delayless routing using the ant lion (A-L) optimizer to achieve the substantial coverage, connection, the network-longevity and minimized energy consumption.Originality/valueThe further performance analysis of the proposed system is carried out with the simulation using the network simulator-2 and compared with the genetic algorithm and the particle swarm optimization algorithm to substantiate the competence of the proposed routing method using the ant lion optimization.


2013 ◽  
Vol 706-708 ◽  
pp. 635-638
Author(s):  
Yong Lv

Wireless Sensor Networks consisting of nodes with limited power are deployed to collect and distribute useful information from the field to the other sensor nodes. Energy consumption is a key issue in the sensor’s communications since many use battery power, which is limited. In this paper, we describe a novel energy efficient routing approach which combines swarm intelligence, especially the ant colony based meta-heuristic, with a novel variation of reinforcement learning for sensor networks (ARNet). The main goal of our study was to maintain network lifetime at a maximum, while discovering the shortest paths from the source nodes to the sink node using an improved swarm intelligence. ARNet balances the energy consumption of nodes in the network and extends the network lifetime. Simulation results show that compared with the traditional EEABR algorithm can obviously improve adaptability and reduce the average energy consumption effectively.


Sign in / Sign up

Export Citation Format

Share Document