Mechanical property and reliability of bimodal nano-silver paste with Ag-coated SiC particles

2019 ◽  
Vol 31 (4) ◽  
pp. 193-202 ◽  
Author(s):  
Qiaoran Zhang ◽  
Abdelhafid Zehri ◽  
Jiawen Liu ◽  
Wei Ke ◽  
Shirong Huang ◽  
...  

Purpose This study aims to develop a bimodal nano-silver paste with improved mechanical property and reliability. Silicon carbide (SiC) particles coated with Ag were introduced in nano-silver paste to improve bonding strength between SiC and Ag particles and enhance high-temperature stability of bimodal nano-silver paste. The effect of sintering parameters such as sintering temperature, sintering time and the proportion of SiC particles on mechanical property and reliability of sintered bimodal nano-silver structure were investigated. Design/methodology/approach Sandwich structures consist of dummy chips and copper substrates with nickel and silver coating bonded by nano-silver paste were designed for shear testing. Shear strength testing was conducted to study the influence of SiC particles proportions on the mechanical property of sintered nano-silver joints. The reliability of the bimodal nano-silver paste was evaluated experimentally by means of shear test for samples subjected to thermal aging test at 150°C and humidity and temperature testing at 85°C and 85 per cent RH, respectively. Findings Shear strength was enhanced obviously with the increase of sintering temperature and sintering time. The maximum shear strength was achieved for nano-silver paste sintered at 260°C for 10 min. There was a negative correlation between the proportion of SiC particles and shear strength. After thermal aging testing and humidity and temperature testing for 240 h, the shear strength decreased a little. High-temperature stability and high-hydrothermal stability were improved by the addition of SiC particles. Originality/value Submicron-scale SiC particles coated with Ag were used as alternative materials to replace part of nano-silver particles to prepare bimodal nano-silver paste due to its high thermal conductivity and excellent mechanical property.

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5941
Author(s):  
Steve Lien-Chung Hsu ◽  
Yen-Ting Chen ◽  
Meng-Liang Chen ◽  
In-Gann Chen

A silver precursor (silver 2-ethylhexanoate) and silver nanoparticles were synthesized and used to prepare a low sintering temperature nano-silver paste (PM03). We optimized the amount of silver 2-ethylhexanoate added and the sintering temperature to obtain the best performance of the nano-silver paste. The relationship between the microstructures and properties of the paste was studied. The addition of silver 2-ethylhexanoate resulted in less porosity, leading to lower resistivity and higher shear strength. Thermal compression of the paste PM03 at 250 °C with 10 MPa pressure for 30 min was found to be the proper condition for copper-to-copper bonding. The resistivity was (3.50 ± 0.02) × 10−7 Ω∙m, and the shear strength was 57.48 MPa.


2019 ◽  
Vol 32 (3) ◽  
pp. 129-136 ◽  
Author(s):  
Yansong Tan ◽  
Xin Li ◽  
Xu Chen ◽  
Zhenwen Yang ◽  
Guo-Quan Lu

Purpose This paper aims to use nano-silver paste to design a new bonding method for super-large-area direct-bonded-aluminum (DBA) plates. It compared several frequently used bonding methods and proved the feasibility of an optimized low-pressure-assisted double-layer-printed silver sintering technology for large-area bonding to increase the thermal conductivity of power electronic modules with high junction temperature, higher power density and higher reliability. Design/methodology/approach The bonding profile was optimized by using transparent glasses as substrates. Thus, the bonding qualities could be directly characterized by optical observation. After sintering, the bonded DBA samples were characterized by nondestructive X-ray computed tomography system, scanning electron microscopy equipped with an energy dispersive spectrometer. Finally, bonding stress evolution was characterized by shear tests. Findings Low-pressure-assisted large-area double-layer-printed bonding process consisting of six-step was successfully developed to bond DBA substrates with the size of 50.8 × 25.4 mm. The thickness of the sintered-silver bond-line was between 33  and 74 µm with the average porosity of 12.5 per cent. The distribution of shear strength along the length of DBA/DBA bonded sample was from 9.7  to 18.8 MPa, with average shear strength of 15.5 MPa. The typical fracture primarily propagated in the sintered-silver layer and partially along the Ni layer. Research limitations/implications The bonding stress needs to be further improved. Meanwhile, the thermal and electrical properties are encouraged to test further. Practical implications If nano-silver paste can be used as thermal interfacial material for super-large-area bonding, the thermal performance will be improved. Social implications The paper accelerated the use of nano-silver paste for super-large-area DBA bonding. Originality/value The proposed bonding method greatly decreased the bonding pressure.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chenfei Zhao ◽  
Jun Wang ◽  
Lini Lu

Purpose In flexible electronics applications, organic inks are mostly used for inkjet printing. Three-dimensional (3 D) printing technology has the advantages of low cost, high speed and good precision in modern electronic printing. The purpose of this study is to solve the high cost of traditional printing and the pollution emissions of organic ink. It is necessary to develop a water-based conductive ink that is easily degradable and can be 3 D printed. A nano-silver ink printed circuit pattern with high precision, high conductivity and good mechanical properties is a promising strategy. Design/methodology/approach The researched nano-silver conductive ink is mainly composed of silver nanoparticles and resin. The effect of adding methyl cellulose on the ink was also explored. A simple 3 D circuit pattern was printed on photographic paper. The line width, line length, line thickness and conductivity of the printed circuit were tested. The influence of sintering temperature and sintering time on pattern resistivity was studied. The relationship between circuit pattern bending performance and electrical conductivity is analyzed. Findings The experimental results show that the ink has the characteristics of low silver content and good environmental protection effect. The printing feasibility of 3 D printing circuit patterns on paper substrates was confirmed. The best printing temperature is 160°C–180°C, and the best sintering time is 30 min. The circuit pattern can be folded 120°, and the cycle is folded more than 60 times. The minimum resistivity of the circuit pattern is 6.07 µΩ·cm. Methyl cellulose can control the viscosity of the ink. The mechanical properties of the pattern have been improved. The printing method of 3 D printing can significantly reduce the sintering time and temperature of the conductive ink. These findings may provide innovation for the flexible electronics industry and pave the way for alternatives to cost-effective solutions. Originality/value In this study, direct ink writing technology was used to print circuit patterns on paper substrates. This process is simple and convenient and can control the thickness of the ink layer. The ink material is nonpolluting to the environment. Nano-silver ink has suitable viscosity and pH value. It can meet the requirements of pneumatic 3 D printers. The method has the characteristics of simple process, fast forming, low cost and high environmental friendliness.


2018 ◽  
Vol 47 (2) ◽  
pp. 173-179 ◽  
Author(s):  
Ling Weng ◽  
Ting Wang ◽  
Pei-Hai Ju ◽  
Li-Zhu Liu

Purpose This paper aims to develope the electromagnetic interference shielding materials with high performance. To develop advanced polymer-based electromagnetic interference shielding materials with rather high temperature stability, good processability and moderate mechanical properties, the authors chose the polyimide (PI) foam as matrix and ferriferrous oxide (Fe3O4) as fillers to prepare the composite foams with lightweight and rather good electromagnetic interference shielding performance. Design/methodology/approach Some polyimide nanocomposite foams with Fe3O4 as fillers have been prepared by in situ dispersion and foaming with pyromellitic dianhydride (PMDA) and isocyanate (PAPI) as raw materials and water as foaming agent. By varying the Fe3O4 contents, a series of PI/Fe3O4 nanocomposite foams with fine microstructures and high thermal stability were obtained. The structure and performances of nanocomposite foams were examined, and the effects of Fe3O4 on the microstructure and properties of composite foams were investigated. Findings This work demonstrates that PI/Fe3O4 foams could be fabricated by thermally treating the polyimide foam intermediates with Fe3O4 nanoparticles through a blending reaction of precursors. The final PI/Fe3O4 composite foams maintained the excellent thermal property and showed a super paramagnetic behaviour, which has a positive effect on the improvement of electromagnetic shielding performance. Research limitations/implications In this paper, the effects of Fe3O4 on the performances of PI/Fe3O4 composite foam were reported. It provided an effective methodology for the preparation of polymer/Fe3O4 nanocomposite foams, which hold great promise towards the potential application in the areas of electromagnetic shielding materials. Originality/value A series of PI/Fe3O4 composite foams with different contents of Fe3O4 were prepared by blending reaction of the precursors. The effects of Fe3O4 on the structures and properties of PI/Fe3O4 composite foam were discussed in detail.


2018 ◽  
Vol 278 ◽  
pp. 82-88
Author(s):  
Robin Hron ◽  
Martin Kadlec ◽  
František Martaus

Geopolymers are amorphous aluminosilicate materials which combine low temperature, polymer-like processing with high temperature stability and fire resistibility without toxic smoke generation. For larger expansion of geopolymer composites in aircraft industry, it is necessary to know how it behaves in contact with operating fluids. The specimens were divided into groups exposed to fuel, hydraulic oil, jet oil, and salt mist. Hot/Wet condition until saturation was also applied for one group. Mechanical testing was performed by means of tension, compression, in-plane shear, flexion and interlaminar shear on both reference non-treated and exposed specimens. The largest decrease in all measured strength values was caused by the salt mist. As the most significant, in-plane shear strength was decreased by 85 % by this environment. Operating fluids and hot/wet conditions decreased the shear strength approx. by 15 %. Geopolymer composites are an interesting alternative to existing polymeric and ceramic matrix materials and offers high potential for cost-efficient applications dealing with temperatures up to 1 200°C.


2012 ◽  
Vol 24 (2) ◽  
pp. 120-126 ◽  
Author(s):  
Xin Li ◽  
Gang Chen ◽  
Xu Chen ◽  
Guo‐Quan Lu ◽  
Lei Wang ◽  
...  

2013 ◽  
Vol 700 ◽  
pp. 175-178
Author(s):  
Guang Pu Hao

According to the different powder oil ratio of asphalt mixture rutting experiment at high temperature, rotary experimenting machine, for different powder oil ratio dynamic shear experiment of asphalt mortar, using the scanning electron microscope observation on the microstructure of asphalt mortar, powder oil ratio on mixture high temperature stability influence. The experiment results show that: powder oil ratio is larger, stronger anti rut ability, and powder oil ratio is affected by the asphalt shear strength to influence high temperature stability of asphalt mixture, and put forward the best powder oil ratio in the range of 0.18~1.2.


Sign in / Sign up

Export Citation Format

Share Document