scholarly journals Advances in pressure sensing for vapour phase soldering process monitoring

2019 ◽  
Vol 31 (3) ◽  
pp. 169-175 ◽  
Author(s):  
Mohamed Amine Alaya ◽  
Attila Geczy ◽  
Balazs Illes ◽  
Gábor Harsányi ◽  
David Bušek

Purpose The purpose of the paper is to improve the control of vapour phase soldering (VPS). To enable better productivity and assembling quality, the industry needs to provide precise control and measurements during assembling. In the paper, a special monitoring method is presented for VPS to enable improved process control and oven state identification. Design/methodology/approach The work presents the investigation of the workspace with dynamic and gage type pressure sensors in fusion with thermocouples. Different sensors were evaluated to find an appropriate type. The relation between the temperature and the pressure was investigated, according to the setup of the oven. The effect of inserting a printed circuit board (PCB) on the pressure of the vapour inside the oven was also investigated with the pressure/power functions. Findings It was found that the novel gage-type sensors enable better precision than solutions seen in previous literature. The sensors are able to monitor the decreasing vapour concentration when a PCB is inserted to the workspace. It was found that there is a suggested minimum power to sustain a well-developed vapour column for soldering in saturated vapour. An inflexion point highlights this in the pressure/power function, in accordance with the temperature/power curve. Originality/value The research presents original works with aspects of a novel sensor fusion concept and work space monitoring for better process control and improved soldering quality.

2017 ◽  
Vol 29 (1) ◽  
pp. 34-41 ◽  
Author(s):  
Attila Geczy ◽  
Daniel Nagy ◽  
Balazs Illes ◽  
Laszlo Fazekas ◽  
Oliver Krammer ◽  
...  

Purpose The paper aims to present an investigation of heating during vapour phase soldering (VPS) on inclined printed circuit board (PCB) substrates. The PCB is a horizontal rectangular plate from the aspect of filmwise condensation with a given inclination setting. Design/methodology/approach The paper focuses on the measurement of temperature distribution on the PCBs with a novel setup immersed in the saturated vapour space. The measuring instrumentation is optimized to avoid and minimize vapour perturbing effects. Findings The inhomogeneity of the heating is presented according to the lateral dimensions of the PCB. The inclination improves temperature uniformity, improves heat transfer efficiency; however, a minor misalignment may affect the flow and result in uneven heating. Practical implications The results can be implemented for practical improvements in industrial ovens with the use of intended inclination. The improvements may consequently point to more efficient production and better joint quality. Originality/value The novel method can be used for deeper investigation of inclination during and can be complemented with numerical calculations. The results highlight the importance of precise PCB holding instrumentation in VPS ovens.


Circuit World ◽  
2019 ◽  
Vol 46 (2) ◽  
pp. 85-92
Author(s):  
Daniel Straubinger ◽  
István Bozsóki ◽  
David Bušek ◽  
Balázs Illés ◽  
Attila Géczy

Purpose In this paper, analytical modelling of heat distribution along the thickness of different printed circuit board (PCB) substrates is presented according to the 1 D heat transient conduction problem. This paper aims to reveal differences between the substrates and the geometry configurations and elaborate on further application of explicit modelling. Design/methodology/approach Different substrates were considered: classic FR4 and polyimide, ceramics (BeO, Al2O3) and novel biodegradables (polylactic-acid [PLA] and cellulose acetate [CA]). The board thicknesses were given in 0.25 mm steps. Results are calculated for heat transfer coefficients of convection and vapour phase (condensation) soldering. Even heat transfer is assumed on both PCB sides. Findings It was found that temperature distributions along PCB thicknesses are mostly negligible from solder joint formation aspects, and most of the materials can be used in explicit reflow profile modelling. However PLA shows significant temperature differences, pointing to possible modelling imprecisions. It was also shown, that while the difference between midplane and surface temperatures mainly depend on thermal diffusivity, the time to reach solder alloy melting point on the surface depends on volumetric heat capacity. Originality/value Results validate the applicability of explicit heat transfer modelling of PCBs during reflow for different heat transfer methods. The results can be incorporated into more complex simulations and profile predicting algorithms for industrial ovens controlled in the wake of Industry 4.0 directives for better temperature control and ultimately higher soldering quality.


2020 ◽  
Vol 32 (4) ◽  
pp. 191-199
Author(s):  
Przemysław Ptak ◽  
Krzysztof Górecki ◽  
Agata Skwarek ◽  
Krzysztof Witek ◽  
Jacek Tarasiuk

Purpose This paper aims to present the results of investigations that show the influence of soldering process parameters on the optical and thermal parameters of power LEDs. Design/methodology/approach The power LEDs were soldered onto metal core printed circuit board (MCPCB) substrates in different soldering ovens: batch and tunnel types, characterized by different thermal profiles. Three types of solder pastes based on Sn99Ag0.3Cu0.7 with the addition of TiO2 were used. The thermal and optical parameters of the diodes were measured using classical indirect electrical methods. The results of measurements obtained were compared and discussed. Findings It was shown that the type of oven and soldering thermal profile considerably influence the effectiveness of the removal of heat generated in the LEDs tested. This influence is characterized by thermal resistance changes. The differences between the values of this parameter can exceed 20%. This value also depends on the composition of the soldering paste. The differences between the diodes tested can exceed 15%. It was also shown that the luminous flux emitted by the diode depends on the soldering process used. Practical implications The results obtained could be useful for process design engineers for assembling power LEDs for MCPCBs and for designers of solid-state light sources. Originality/value This paper presents the results of investigations into the influence of the soldering profiles and soldering pastes used on the effectiveness of the removal of heat generated in power LEDs. It shows and discusses how the factors mentioned above influence the thermal resistance of the LEDs and optical parameters that characterize the light emitted.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Krzysztof Górecki ◽  
Przemysław Ptak ◽  
Barbara Dziurdzia

Purpose This paper presents the results of the investigations of LED modules soldered with the use of different soldering pastes. Design/methodology/approach The tested power LED modules are soldered using different solder pastes and soldering processes. Thermal parameters of the performed modules are tested using indirect electrical methods. The results of measurements obtained for different modules are compared and discussed. Findings It was shown that the soldering process visibly influences the results of measurements of optical and thermal parameters of LED modules. For example, values of thermal resistance of these modules and the efficiency of conversion of electrical energy into light differ between each other even by 15%. Practical implications The obtained results of investigations can be usable for designers of the assembly process of power LED modules. Originality/value This paper shows the investigations results in the area of effective assembly of power LEDs to the metal core printed circuit board (MCPCB) using different soldering pastes (REL22, REL61, LMPA-Q6, OM-5100, OM-338-PT, M8, OM-340, CVP-390). It was shown that the best thermal and optical properties of these modules are obtained for the OM5100 paste by Alpha Assembly.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yutian Yin ◽  
Hongda Zhou ◽  
Cai Chen ◽  
Yi Zheng ◽  
Hongqiao Shen ◽  
...  

Purpose The simulated temperature profile of the printed circuit board assembly (PCBA) during reflow soldering process deviates from the actual profile. To reduce this relative deviation, a new strategy based on the Kriging response surface and the Multi-Objective Genetic Algorithm (MOGA) optimizing method is proposed. Design/methodology/approach The simulated temperature profile of the PCBA during reflow soldering process deviates from the actual profile. To reduce this relative deviation, a new strategy based on the Kriging response surface and the MOGA optimizing method is proposed. Findings Several critical influencing parameters such as temperature and the convective heat transfer coefficient of the specific temperature zones are selected as the correction parameters. The hyper Latins sampling method is implemented to distribute the design points, and the Kriging response surface model of the soldering process is constructed. The updated model is achieved and validated by the test. The relative derivation is reduced from the initial value of 43.4%–11.8% in terms of the time above the liquidus line. Originality/value A new strategy based on the Kriging response surface and the MOGA optimizing method is proposed.


2018 ◽  
Vol 30 (2) ◽  
pp. 81-86 ◽  
Author(s):  
Krzysztof Górecki ◽  
Barbara Dziurdzia ◽  
Przemyslaw Ptak

Purpose This paper aims to present the results of the influence of a manner of soldering light emitting diodes (LEDs) to the metal core printed circuit board on thermal parameters of the module LED containing these diodes. Design/methodology/approach Using the authors’ elaborated measuring method and the dedicated measurement set-up, transient thermal impedances of LED modules, mounted using different soldering processes and mounted to the heat-sink with different values of the moment of force, are measured. The obtained results of measurements are discussed. Findings It was shown experimentally that the manner of soldering could strongly influence efficiency of dissipation of heat generated in the module. The best thermal properties were obtained for soldering using vapour phase technology with vacuum and paste LFS-216LT. It was also proved that the moment of force used while mounting the considered modules on the heat-sink can result in a change of the value of thermal resistance of this module exceeding even 12 per cent. Research limitations/implications The investigations were performed for five LED modules operating at one, arbitrarily selected value of power dissipated in these modules mounted on the heat-sink of arbitrarily selected dimensions. Practical implications The obtained results of measurements could be usable for designers of mounting processes of power LED modules. Originality/value This paper presents the results of investigations of thermal properties of LED modules, in which different techniques of soldering are used. It was shown experimentally that the manner of soldering could strongly influence efficiency of dissipation of heat generated in the module. It was also proved that the moment of force used while mounting the considered modules on the heat-sink is important.


2014 ◽  
Vol 26 (4) ◽  
pp. 194-202 ◽  
Author(s):  
Helene Conseil ◽  
Morten Stendahl Jellesen ◽  
Rajan Ambat

Purpose – The purpose of this paper was to analyse typical printed circuit board assemblies (PCBAs) processed by reflow, wave or selective wave soldering for typical levels of process-related residues, resulting from a specific or combination of soldering processes. Typical solder flux residue distribution pattern, composition and concentration are profiled and reported. The effect of such contaminants on conformal coating was tested. Design/methodology/approach – Presence of localized flux residues was visualized using a commercial residue reliability assessment testing gel test and chemical structure was identified by Fourier transform infrared spectroscopy, while the concentration was measured using ion chromatography, and the electrical properties of the extracts were determined by measuring the leak current using a twin platinum electrode set-up. Localized extraction of residue was carried out using a commercial critical contamination control extraction system. Findings – Results clearly show that the amount and distribution of flux residues are a function of the soldering process, and the level can be reduced by an appropriate cleaning. Selective soldering process generates significantly higher levels of residues compared to the wave and reflow process. For conformal coated PCBAs, the contamination levels generated from the tested wave and selective soldering process are found to be enough to generate blisters under exposure to high humidity levels. Originality/value – Although it is generally known that different soldering processes can introduce contamination on the PCBA surface, compromising its cleanliness, no systematic work is reported investigating the relative levels of residue introduced by various soldering processes and its effect on corrosion reliability.


2021 ◽  
Vol 11 (4) ◽  
pp. 1755
Author(s):  
Mohamed Amine Alaya ◽  
Balázs Illés ◽  
David Bušek ◽  
Attila Géczy

Electronic manufacturing principles are continuously developing, further improving assembly quality and productivity. There is a continuous need to apply novel and improved methods of process monitoring to provide accurate measurement and control during assembling. In this paper, a new principle for monitoring filmwise condensation-based heat-level—vapour phase soldering (HL-VPS) is presented to improve the process control. The experiment is based on thermocouple sensors in fusion with a sensitive gauge type pressure sensor. The aim is to precisely identify the steps of condensation-based reflow heat transfer process with commercially available components and the mindset of possible retrofitting in the generally used HL-VPS soldering ovens. It was found that the gauge sensor can follow the state of the workspace more precisely as the thermocouples, by monitoring the hydrostatic state of the vapour. The pressure (time) function gives information about the build-up of the vapour column, highlighting four characteristic steps (phases) of the process, meaning: immersion of the sample to be soldered, condensation-based heat transfer, solder-break, and cooling. Combined application with thermocouples enables more precise control, improving soldering quality and can reduce idle time of the oven. In addition, it was showed that the gauge type sensors could highlight any failure in the oven sealing by a sensor signal threshold detection. The original concept of workspace identification also fits the present and future industry 4.0 directives.


Circuit World ◽  
2016 ◽  
Vol 42 (1) ◽  
pp. 32-36 ◽  
Author(s):  
Michal Baszynski ◽  
Edward Ramotowski ◽  
Dariusz Ostaszewski ◽  
Tomasz Klej ◽  
Mariusz Wojcik ◽  
...  

Purpose – The purpose of this paper is to evaluate thermal properties of printed circuit board (PCB) made with use of new materials and technologies. Design/methodology/approach – Four PCBs with the same layout but made with use of different materials and technologies have been investigated using thermal camera to compare their thermal properties. Findings – The results show how important the thermal properties of PCBs are for providing effective heat dissipation, and how a simple alteration to the design can help to improve the thermal performance of electronic device. Proper layout, new materials and technologies of PCB manufacturing can significantly reduce the temperature of electronic components resulting in higher reliability of electronic and power electronic devices. Originality/value – This paper shows the advantages of new technologies and materials in PCB thermal management.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xixian Lin ◽  
Yuming Zhang ◽  
Yimeng Zhang ◽  
Guangjian Rong

Purpose The purpose of this study is to design a more flexible and larger range of the dimming circuit that achieves the independence of multiple LED strings drive and can time-multiplex the power circuit. Design/methodology/approach The state-space method is used to model the BUCK circuit working in Pseudo continuous conduction mode, analyze the frequency characteristics of the system transfer function and design the compensation network. Build a simulation platform on the Orcad PSPICE platform and verify the function of the designed circuit through the simulation results. Use Altium Designer 16 to draw the printed circuit board, complete the welding of various components and use the oscilloscope, direct current (DC) power supply and a signal generator to verify the circuit function. Findings A prototype of the proposed LED driver is fabricated and tested. The measurement results show that the switching frequency can be increased to 1 MHz, Power inductance is 2.2 µH, which is smaller than current research. The dimming ratio can be set from 10% to 100%. The proposed LED driver can output more than 48 W and achieve a peak conversion efficiency of 91%. Originality/value The proposed LED driver adopts pulse width modulation (PWM) dimming at a lower dimming ratio and adopts DC dimming at a larger dimming ratio to realize switching PWM dimming to analog dimming. The control strategy can be more precise and have a wide range of dimming.


Sign in / Sign up

Export Citation Format

Share Document