Satellite magnetic/momentum wheel attitude control technology based on PIO cascade-saturation algorithm

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bing Hua ◽  
Nan Zhang ◽  
Mohong Zheng

Purpose Taking into account the factors of torque saturation and angular velocity limitation during the actual attitude maneuver of the satellite, as well as the difficulty of parameter selection in the design of attitude control algorithm, the purpose of this paper is to propose a satellite magnetic/momentum wheel attitude control technology based on pigeon-inspired optimization (PIO) cascade-saturation control law optimization. Design/methodology/approach The optimal parameters are calculated through the PIO algorithm and then the parameters are used in the cascade-saturation control law to control the actuator findings-mathematical simulation results show that the cascade-saturation control law optimization algorithm based on PIO can shorten the adjustment time and reduce the steady-state error. Findings Compared with traditional attitude maneuver control with given parameters, the PIO algorithm can accurately calculate the optimal parameters needed to achieve the control objective and this method has better stability and higher accuracy. Originality/value The innovative PIO algorithm is used to calculate the optimal parameters, and the cascade saturation control law is used to control the actuator. Compared with the traditional algorithm, the regulation time is shortened and the steady-state error is reduced.

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Rui-Qi Dong ◽  
Yu-Yao Wu ◽  
Ying Zhang ◽  
Ai-Guo Wu

In this paper, an observer-based adaptive backstepping attitude maneuver controller (briefly, OBABC) for flexible spacecraft is presented. First, an observer is constructed to estimate the flexible modal variables. Based on the proposed observer, a backstepping control law is presented for the case where the inertia matrix is known. Further, an adaptive law is developed to estimate the unknown parameters of the inertia matrix of the flexible spacecraft. By utilizing Lyapunov theory, the proposed OBABC law can guarantee the asymptotical convergence of the closed-loop system in the presence of the external disturbance, incorporating with the L2-gain performance criterion constraint. Simulation results show that the attitude maneuver can be achieved by the proposed observer-based adaptive backstepping attitude control law.


2017 ◽  
Vol 89 (6) ◽  
pp. 902-910 ◽  
Author(s):  
Uzair Ansari ◽  
Abdulrahman H. Bajodah

Purpose To design a robust attitude control system for the ascent flight phase of satellite launch vehicles (SLVs). Design/methodology/approach The autopilot is based on generalized dynamic inversion (GDI). Dynamic constraints are prescribed in the form of differential equations that encapsulate the control objectives, and are generalized inverted using the Moore-Penrose Generalized Inverse (MPGI) based Greville formula to obtain the control law. The MPGI is modified via a dynamic scaling factor for assuring generalized inversion singularity-robust tracking control. An additional sliding mode control (SMC) loop is augmented to robustify the GDI closed-loop system against model uncertainties and external disturbances. Findings The robust GDI control law allows for two cooperating controllers that act on two orthogonally complement control spaces: one is the particular controller that realizes the dynamic constraints, and the other is the auxiliary controller that is affined in the null control vector, and is used to enforce global closed-loop stability. Practical implications Orthogonality of the particular and the auxiliary control subspaces ensures noninterference of the two control actions, and thus, it ensures that both actions work toward a unified goal. The robust control loop increases practicality of the GDI control design. Originality/value The first successful implementation of GDI to the SLV control problem.


Author(s):  
Yabo Hu ◽  
Baolin Wu ◽  
Yunhai Geng ◽  
Yunhua Wu

In this paper, a trajectory optimization method for generating smooth and approximate time-optimal attitude maneuver trajectories of flexible spacecraft is proposed. Smooth attitude maneuver is highly desirable for flexible spacecraft, since vibration of flexible appendices can be suppressed. In order to obtain smooth and approximate time-optimal attitude trajectory, a novel objective function composed of two terms is developed in the problem of trajectory optimization: the first term is proportional to the total maneuver time and the other one is proportional to the integral of the squared control torque derivatives. This latter term ensures that the generated trajectory is smooth. The degree of the smoothness of the trajectory can be adjusted by the weights of these two terms. The constraints on angular velocity and angular acceleration are considered in the proposed method. A closed-loop tracking control law is then employed to track the optimized reference attitude trajectory. Numerical simulations and frequency domain analysis show that the proposed method can generate smoother trajectory than traditional time-optimal methods, which leads to less vibration during attitude maneuver of a flexible spacecraft.


2011 ◽  
Vol 83 (5) ◽  
pp. 296-305 ◽  
Author(s):  
Cui Hutao ◽  
Cheng Xiaojun ◽  
Xu Rui ◽  
Cui Pingyuan

PurposeThe purpose of this paper is to propose an attitude control algorithm for spacecraft with geometric constraints.Design/methodology/approachThe geometric constraint is reformulated as a quadratic form when quaternion is used as attitude parameter, then the constraint is proved to be nonconvex and is further transformed to a convex one. By designing a new constraint formulation to satisfy the real constraint in the predictive horizon, the attitude control problem is reshaped to a convex planning problem which is based on receding horizon control.FindingsThe proposed algorithm is more effective in handling geometric constraints than previous research which used single step planning control.Practical implicationsWith novel improvements to current methods for steering spacecraft from one attitude to another with geometric constraints, great attitude maneuver path can be achieved to protect instruments and meanwhile satisfy mission requirements.Originality/valueThe attitude control algorithm in this paper is designed especially for the satisfaction of geometric constraints in the process of attitude maneuver of spacecraft. By the application of this algorithm, the security of certain optical instruments, which is critical in an autonomous system, can be further assured.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohd Badrul Salleh ◽  
Nurulasikin Mohd Suhadis ◽  
Renuganth Varatharajoo

Purpose This paper aims to investigate the attitude control pointing improvement for a small satellite with control moment gyroscopes (CMGs) using the active force control (AFC) method. Design/methodology/approach The AFC method is developed with its governing equations and integrated into the conventional proportional-derivative (PD) controller of a closed-loop satellite attitude control system. Two numerical simulations of an identical attitude control mission namely the PD controller and the PD+AFC controller were carried out using the MATLAB®-SimulinkTM software and their attitude control performances were demonstrated accordingly. Findings Having the PD+AFC controller, the attitude maneuver can be completed within the desired slew rate, which is about 2.14 degree/s and the attitude pointing accuracies for the roll, pitch and yaw angles have improved significantly by more than 85% in comparison with the PD controller alone. Moreover, the implementation of the AFC into the conventional PD controller does not cause significant difference on the physical structure of the four single gimbal CMGs (4-SGCMGs). Practical implications To achieve a precise attitude pointing mission, the AFC method can be applied directly to the existing conventional PD attitude control system of a CMG-based satellite. In this case, the AFC is indeed the backbone for the satellite attitude performance improvement. Originality/value The present study demonstrates that the attitude pointing of a small satellite with CMGs is improved through the implementation of the AFC scheme into the PD controller.


2018 ◽  
Vol 41 (4) ◽  
pp. 1002-1009 ◽  
Author(s):  
Seyed Majid Smaeilzadeh ◽  
Mehdi Golestani

This paper addresses the problem of attitude control of a spacecraft in the presence of model uncertainty, external disturbance, actuator fault and saturation. By introducing a novel form of integral backstepping control, a finite-time fault tolerant control is designed to obtain satisfactory performance, rapid convergence of the system states, reduced steady-state error and high robustness. Guaranteeing finite-time convergence of the attitude trajectory is a significant feature of the proposed control law that is critical in fault tolerant systems. Since the upper bound of the system uncertainty and disturbance is quite difficult to obtain, an adaptation mechanism is presented under which there is no need to know this upper bound. Not only finite-time convergence of the attitude trajectory is proved using the Lyapunov analysis, but also the actuator saturation and fault are taken into account while designing the controller. Simulation results verify the effectiveness and performance of the presented approach.


Author(s):  
Erdem Ilten ◽  
Metin Demirtas

Purpose To meet the need of reducing the cost of industrial systems, sensorless control applications on electrical machines are increasing day by day. This paper aims to improve the performance of the sensorless induction motor control system. To do this, the speed observer is designed based on the combination of the sliding mode and the fractional order integral. Design/methodology/approach Super-twisting sliding mode (STSM) and Grünwald–Letnikov approach are used on the proposed observer. The stability of the proposed observer is verified by using Lyapunov method. Then, the observer coefficients are optimized for minimizing the steady-state error and chattering amplitude. The optimum coefficients (c1, c2, ki and λ) are obtained by using response surface method. To verify the effectiveness of proposed observer, a large number of experiments are performed for different operation conditions, such as different speeds (500, 1,000 and 1,500 rpm) and loads (100 and 50 per cent loads). Parameter uncertainties (rotor inertia J and friction factor F) are tested to prove the robustness of the proposed method. All these operation conditions are applied for both proportional integral (PI) and fractional order STSM (FOSTSM) observers and their performances are compared. Findings The observer model is tested with optimum coefficients to validate the proposed observer effectiveness. At the beginning, the motor is started without load. When it reaches reference speed, the motor is loaded. Estimated speed and actual speed trends are compared. The results are presented in tables and figures. As a result, the FOSTSM observer has less steady-state error than the PI observer for all operation conditions. However, chattering amplitudes are lower in some operation conditions. In addition, the proposed observer shows more robustness against the parameter changes than the PI observer. Practical implications The proposed FOSTSM observer can be applied easily for industrial variable speed drive systems which are using induction motor to improve the performance and stability. Originality/value The robustness of the STSM and the memory-intensive structure of the fractional order integral are combined to form a robust and flexible observer. This paper grants the lower steady-state error and chattering amplitude for sensorless speed control of the induction motor in different speed and load operation conditions. In addition, the proposed observer shows high robustness against the parameter uncertainties.


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 419 ◽  
Author(s):  
En-Chih Chang ◽  
Sung-Chi Yang ◽  
Rong-Ching Wu

This paper applies modified feedback technology to carry out the exact steady-state and fast transient in a high-performance alternating current (AC) power supply. The presented scheme displays the virtues of a finite-time convergence control (FTCC) and a discrete grey prediction model (DGPM). The FTCC, derived from a terminal sliding-mode (TSM) design principle, can produce the finite system-state convergence time and evade the singularity. It is noteworthy that the chattering/steady-state error around the FTCC may occur because of the overestimated or underestimated uncertainty bound. The DGPM with the bound estimate ability is integrated into the FTCC to cope with internal parameter variations and external load disturbances. The less chattering and steady-state error can be obtained, providing more robust performance in the AC power supply. The combination of the FTCC and the DGPM extends the standard TSM design for the purpose of faster singularity-free convergence, as well as introducing the grey modeling method in the case of a more exact uncertainty estimate. The modified control technology has a high-precision tracking performance and a fast convergent speed. Simulated and experimental results point out that the modified control technology can effectuate low total harmonic distortion (THD) and fast dynamic response in the presence of rectifier loads and abrupt step load changes.


2018 ◽  
Vol 90 (6) ◽  
pp. 896-905 ◽  
Author(s):  
Saleh Akbaritabar ◽  
Reza Esmaelzadeh ◽  
Reza Zardashti

Purpose This paper aims to describe a novel type of attitude control system (ACS) in different configurations. This servomechanism is compared with control moment gyro (CMG) in significant parameters of performance for ACS of rigid satellite. Design/methodology/approach This new actuator is the fluid containing one or more rings and fluid flow is supplied by pump. The required torque control is obtained by managing fluid angular velocity. The cube-shaped satellite with three rings of fluid in the principle axes is considered for modeling. The satellite is considered rigid and nonlinear dynamics equation is used for it. In addition, the failure of the pyramid-shaped satellite with an additional ring fluid is discussed. Findings The controller model for four fluid rings has more complexity than for three fluid rings. The simulation results illustrated that four fluid rings need less energy for stabilization than three fluid rings. The performance of this type of actuator is compared with CMG. At last, it is demonstrated that performance parameters are improved with fluid ring actuator. Research limitations/implications Fluid ring actuator can be affected by environmental pressure and temperature. Therefore, freezing and boiling temperature of the fluid should be considered in system designation. Practical implications Fluid ring servomechanism can be used as ACS in rigid satellites. This actuator is compared by CMG, the prevalent actuator. It has less displacement attitude maneuver. Originality/value The results provide the feasibility and advantages of using fluid rings as satellite ACS. The quaternion error controller is used for this model to enhance its performance.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yang Yuan ◽  
Haibin Duan

Purpose The purpose of this paper is to develop a novel active disturbance rejection attitude controller for quadrotors and propose a controller parameters identification approach to obtain better control results. Design/methodology/approach Aiming at the problem that quadrotor is susceptible to disturbance in outdoor flight, the improved active disturbance rejection control (IADRC) is applied to design attitude controller. To overcome the difficulty that adjusting the parameters of IADRC controller manually is complex, paired coevolution pigeon-inspired optimization (PCPIO) algorithm is used to optimize the control parameters. Findings The IADRC, where nonlinear state error feedback control law is replaced by non-singular fast terminal sliding mode control law and a third-order tracking differentiator is designed for second derivative of the state, has higher control accuracy and better robustness than ADRC. The improved PIO algorithm based on evolutionary mechanism, named PCPIO, is proposed. The optimal parameters of ADRC controller are found by PCPIO with the optimization criterion of integral of time-weighted absolute value of the error. The effectiveness of the proposed method is verified by a series of simulation experiments. Practical implications IADRC can improve the accuracy of attitude control of quadrotor and resist external interference more effectively. The proposed PCPIO algorithm can be easily applied to practice and can help the design of the quadrotor control system. Originality/value An improved active disturbance rejection controller is designed for quadrotor attitude control, and a hybrid model of PIO and evolution mechanism is proposed for parameters identification of the controller.


Sign in / Sign up

Export Citation Format

Share Document