Measurement of buried oxide thermal conductivity for accurate electrothermal simulation of SOI device

1999 ◽  
Vol 46 (1) ◽  
pp. 251-253 ◽  
Author(s):  
B.M. Tenbroek ◽  
R.J.T. Bunyan ◽  
G. Whiting ◽  
W. Redman-White ◽  
M.J. Uren ◽  
...  
1996 ◽  
Vol 446 ◽  
Author(s):  
J. U. Yoon ◽  
G. N. Kim ◽  
J‐H Y. Krska ◽  
J. E. Chung ◽  
L. P. Allen ◽  
...  

AbstractThe impact of two implant parameters, namely the implant substrate temperature and implant beam current, on the physical and electrical properties of SIMOX buried oxide are investigated. Three implant substrate temperatures, 540 °C, 590 °C, and 640 °C and three beam current, 45 mA, 55 mA, 65 mA, are investigated. Results from thermal conductivity and surface photovoltage measurements show no apparent differences between samples. Results from interface roughness shows a decreasing trend as the substrate temperature and beam current increases. For the samples with different implant temperatures, the high‐field conduction shows an opposite dependence for top‐interface versus substrate injection. This behavior can be explained by the conservation of silicon in the buried oxide. Correlation of surface photovoltage and high‐field conduction shows weak positive dependency while that of interface roughness and high‐field conduction shows dependency only when the sets of temperature variation and beam current variation are decoupled.


2012 ◽  
Vol 571 ◽  
pp. 8-12
Author(s):  
Yan Xiong ◽  
Yu Shu Lai

In this paper, the thermal conductivity of lateral double diffused metal oxide semiconductor (LDMOS) was studied. In order to optimize their properties, the LDMOS device based on the lower surface of field (RESURF) theory join the second field plate technology. Power device self-heating effect will affect the carrier mobility, making its negative resistance effect in IV characteristic curve under the high-power condition. As the thermal conductivity of SiO2 is low, the self-heating effect of SOI device is more obvious. The simulation using Silvaco -TCAD software for different buried oxide (BOX) with different SOI layer thickness accordingly show that the thicker SOI layer and the thinner buried oxide layer, the smaller the self-heating effect.


Author(s):  
N. David Theodore ◽  
Juergen Foerstner ◽  
Peter Fejes

As semiconductor device dimensions shrink and packing-densities rise, issues of parasitic capacitance and circuit speed become increasingly important. The use of thin-film silicon-on-insulator (TFSOI) substrates for device fabrication is being explored in order to increase switching speeds. One version of TFSOI being explored for device fabrication is SIMOX (Silicon-separation by Implanted OXygen).A buried oxide layer is created by highdose oxygen implantation into silicon wafers followed by annealing to cause coalescence of oxide regions into a continuous layer. A thin silicon layer remains above the buried oxide (~220 nm Si after additional thinning). Device structures can now be fabricated upon this thin silicon layer.Current fabrication of metal-oxidesemiconductor field-effect transistors (MOSFETs) requires formation of a polysilicon/oxide gate between source and drain regions. Contact to the source/drain and gate regions is typically made by use of TiSi2 layers followedby Al(Cu) metal lines. TiSi2 has a relatively low contact resistance and reduces the series resistance of both source/drain as well as gate regions


1981 ◽  
Vol 42 (C4) ◽  
pp. C4-931-C4-934 ◽  
Author(s):  
M. F. Kotkata ◽  
M.B. El-den

1981 ◽  
Vol 42 (C6) ◽  
pp. C6-893-C6-895
Author(s):  
M. Locatelli ◽  
R. Suchail ◽  
E. Zecchi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document