Linearization of electrostatically actuated surface micromachined 2-D optical scanner

2001 ◽  
Vol 10 (2) ◽  
pp. 205-214 ◽  
Author(s):  
H. Toshiyoshi ◽  
W. Piyawattanametha ◽  
Cheng-Ta Chan ◽  
M.C. Wu
2012 ◽  
Vol 132 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Satoshi Maruyama ◽  
Muneki Nakada ◽  
Makoto Mita ◽  
Takuya Takahashi ◽  
Hiroyuki Fujita ◽  
...  

1982 ◽  
Vol 11 (1) ◽  
pp. 18-22
Author(s):  
B. K. Roy ◽  
P. N. Puntambekar ◽  
D. Sen

2021 ◽  
Vol 11 (9) ◽  
pp. 3933
Author(s):  
Chol-Gwan Han ◽  
Young-Bum Park ◽  
June-Sung Shim ◽  
Jong-Eun Kim

Improvements in computer-aided design/computer-aided manufacturing technologies have led to multiple attempts being made to simplify and improve the workflow of prosthesis fabrication for completely edentulous patients. However, most attempts still involve the conventional methods of impression-making and recording the maxillomandibular relationships using alginate, rubber impression materials, and wax materials. In the case of a completely edentulous arch, the presence of movable tissues and the absence of stable landmarks make it difficult to perform direct digitization using an intraoral scanner and to digitally determine the vertical dimension. In the alternative technique described herein, data are obtained by scanning a template such as the patient’s existing old dentures and jaw movement data using target materials and an optical scanner, and an appropriate maxillomandibular relationship that has the desired restorative space is determined on the basis of the obtained trajectory of mandibular movements while opening and closing the mouth. After designing dentures on the basis of the newly established maxillomandibular relationships and performing a try-in process, the final dentures can be manufactured. This alternative technique can reduce the need for multiple visits and complex procedures, improving the workflow for fabricating prostheses with the correct maxillomandibular relationships for individual patients.


Sign in / Sign up

Export Citation Format

Share Document