scholarly journals Surface Deformation Monitoring in Coal Mine Area Based on PSI

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 29672-29678 ◽  
Author(s):  
Changjun Huang ◽  
Hongmei Xia ◽  
Jiyuan Hu
2013 ◽  
Vol 718-720 ◽  
pp. 1191-1194
Author(s):  
Yang Yang Li ◽  
Wei Jia Guo ◽  
Hao Qiang Zhang ◽  
Zhong Ju Wei

2351 working face of Daizhuang coal mine is paste filling working face, its mining method is full mining and full backfilling. It is expected that its surface deformation is very small and traditional surface deformation monitoring method is difficult to meet high-precision demand. In order to meet the high precision of measurement area in Daizhuang coal mine, the combination of GPS.RTK and electronic level were studied to measure filled working face, which has achieved good results.


2020 ◽  
Vol 12 (9) ◽  
pp. 1380
Author(s):  
Kleanthis Karamvasis ◽  
Vassilia Karathanassi

Time Series Interferometric Synthetic Aperture Radar (TSInSAR) methods have been widely and successfully applied for spatiotemporal ground deformation monitoring. The main groups of methodological approaches are often referred to as Persistent Scatterer (PS), Small Baseline (SB), and hybrid approaches that incorporate PS and SB concepts. While TSInSAR techniques have long been able to provide accurate deformation rates for various applications, their corresponding performance in complex environments such as mining areas has to be investigated. This study focuses on comparing the performance of three open source TSInSAR toolboxes (Stamps, Giant, Mintpy) over an extended region that includes an active opencast coal mine. We present the deformation results of each TSInSAR method on a Sentinel-1 dataset of 125 acquisitions spanning around 2.5 years over the Ptolemaida-Florina coal mine site that is characterized by several environmental and surface deformation conditions. First, a cross-comparison analysis is presented over different land cover classes. The study shows that all TSInSAR methods are capable for generating similar ground deformation results when the area has stable ground scattering conditions and the dataset sufficient temporal sampling. The most controversial results between TSInSAR approaches were found in land cover classes that include medium to high vegetation. An external comparative analysis between the different results from TSInSAR methods and leveling measurements is also performed. Stamps approach presented the best agreement with the in-situ deformation rates. The Giant approach yielded the best cumulative deformation results due to our a priori knowledge of temporal behavior of deformation in the vicinity of the leveling locations. Finally, we discuss the main pros and cons of each TSInSAR approach and we highlight the importance of comparison analysis that can provide insights and can lead to better interpretation of the results.


2013 ◽  
Vol 405-408 ◽  
pp. 562-565
Author(s):  
Chun Hui Yao ◽  
Qiu Hui Yao

M coal mine is located in the hilly terrain of mountain front in the southern margin of Junggar Basin in Fukang. The geological structure belongs to a medium type in the mine area where there are surface faults (two larger faults) and structural developments. The stratigraphic dips of south limb of Fukang syncline and southern Fukang anticline are large while that near F5 fault of anticline axis are larger and even upright. Brittle rocks develop fractures. In consideration of meteorology, earthquakes and other factors, mining may lead to such geological hazards as eboulement and surface subsidence, which should be highlighted.


2013 ◽  
Vol 448-453 ◽  
pp. 823-829
Author(s):  
Hao Wang

By conducting field investigation and tests, such as groundwater pumping test and rock mechanics test, and building numerical models to simulate damage of coal mining to aquifers, it was proved that coal mining in some coal mine area caused impacts to groundwater environment, including impact on water cycle, the structure of aquifers, and groundwater flow field, as a result of which some water supply sources in coal mine area become unavailable. In addition, a couple of solutions are presented to mitigate the impacts.


2020 ◽  
Vol 10 (18) ◽  
pp. 6445 ◽  
Author(s):  
Theodoros Gatsios ◽  
Francesca Cigna ◽  
Deodato Tapete ◽  
Vassilis Sakkas ◽  
Kyriaki Pavlou ◽  
...  

The Methana volcano in Greece belongs to the western part of the Hellenic Volcanic Arc, where the African and Eurasian tectonic plates converge at a rate of approximately 3 cm/year. While volcanic hazard in Methana is considered low, the neotectonic basin constituting the Saronic Gulf area is seismically active and there is evidence of local geothermal activity. Monitoring is therefore crucial to characterize any activity at the volcano that could impact the local population. This study aims to detect surface deformation in the whole Methana peninsula based on a long stack of 99 Sentinel-1 C-band Synthetic Aperture Radar (SAR) images in interferometric wide swath mode acquired in March 2015–August 2019. A Multi-Temporal Interferometric SAR (MT-InSAR) processing approach is exploited using the Interferometric Point Target Analysis (IPTA) method, involving the extraction of a network of targets including both Persistent Scatterers (PS) and Distributed Scatterers (DS) to augment the monitoring capability across the varied land cover of the peninsula. Satellite geodetic data from 2006–2019 Global Positioning System (GPS) benchmark surveying are used to calibrate and validate the MT-InSAR results. Deformation monitoring records from permanent Global Navigation Satellite System (GNSS) stations, two of which were installed within the peninsula in 2004 (METH) and 2019 (MTNA), are also exploited for interpretation of the regional deformation scenario. Geological, topographic, and 2006–2019 seismological data enable better understanding of the ground deformation observed. Line-of-sight displacement velocities of the over 4700 PS and 6200 DS within the peninsula are from −18.1 to +7.5 mm/year. The MT-InSAR data suggest a complex displacement pattern across the volcano edifice, including local-scale land surface processes. In Methana town, ground stability is found on volcanoclasts and limestone for the majority of the urban area footprint while some deformation is observed in the suburban zones. At the Mavri Petra andesitic dome, time series of the exceptionally dense PS/DS network across blocks of agglomerate and cinder reveal seasonal fluctuation (5 mm amplitude) overlapping the long-term stable trend. Given the steepness of the slopes along the eastern flank of the volcano, displacement patterns may indicate mass movements. The GNSS, seismological and MT-InSAR analyses lead to a first account of deformation processes and their temporal evolution over the last years for Methana, thus providing initial information to feed into the volcano baseline hazard assessment and monitoring system.


2022 ◽  
Vol 14 (1) ◽  
pp. 237
Author(s):  
Tian Zhang ◽  
Wanchang Zhang ◽  
Ruizhao Yang ◽  
Dan Cao ◽  
Longfei Chen ◽  
...  

Carbon Capture, Utilization and Storage, also referred to as Carbon Capture, Utilization and Sequestration (CCUS), is one of the novel climate mitigation technologies by which CO2 emissions are captured from sources, such as fossil power generation and industrial processes, and further either reused or stored with more attention being paid on the utilization of captured CO2. In the whole CCUS process, the dominant migration pathway of CO2 after being injected underground becomes very important information to judge the possible storage status as well as one of the essential references for evaluating possible environmental affects. Interferometric Synthetic Aperture Radar (InSAR) technology, with its advantages of extensive coverage in surface deformation monitoring and all-weather traceability of the injection processes, has become one of the promising technologies frequently adopted in worldwide CCUS projects. In this study, taking the CCUS sequestration area in Shizhuang Town, Shanxi Province, China, as an example, unmanned aerial vehicle (UAV) photography measurement technology with a 3D surface model at a resolution of 5.3 cm was applied to extract the high-resolution digital elevation model (DEM) of the study site in coordination with InSAR technology to more clearly display the results of surface deformation monitoring of the CO2 injection area. A 2 km surface heaving dynamic processes before and after injection from June 2020 to July 2021 was obtained, and a CO2 migration pathway northeastward was observed, which was rather consistent with the monitoring results by logging and micro-seismic studies. Additionally, an integrated monitoring scheme, which will be the trend of monitoring in the future, is proposed in the discussion.


Sign in / Sign up

Export Citation Format

Share Document