scholarly journals A High-Precision Dual-Frequency Magnetic Induction Through-the-Earth Positioning Method

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Wenlong Tian ◽  
Wei Yang ◽  
Xiaotao Shao
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 35109-35120
Author(s):  
Wenlong Tian ◽  
Wei Yang ◽  
Xiaotao Shao

Author(s):  
Tingting Yin ◽  
Zhong Yang ◽  
Youlong Wu ◽  
Fangxiu Jia

The high-precision roll attitude estimation of the decoupled canards relative to the projectile body based on the bipolar hall-effect sensors is proposed. Firstly, the basis engineering positioning method based on the edge detection is introduced. Secondly, the simplified dynamic relative roll model is established where the feature parameters are identified by fuzzy algorithms, while the high-precision real-time relative roll attitude estimation algorithm is proposed. Finally, the trajectory simulations and grounded experiments have been conducted to evaluate the advantages of the proposed method. The positioning error is compared with the engineering solution method, and it is proved that the proposed estimation method has the advantages of the high accuracy and good real-time performance.


Author(s):  
S. Tiguntsev

In classical physics, time is considered absolute. It is believed that all processes, regardless of their complexity, do not affect the flow of time The theory of relativity determines that the flow of time for bodies depends both on the speed of movement of bodies and on the magnitude of the gravitational potential. It is believed that time in space orbit passes slower due to the high speed of the spacecraft, and faster due to the lower gravitational potential than on the surface of the Earth. Currently, the dependence of time on the magnitude of the gravitational potential and velocity (relativistic effect) is taken into account in global positioning systems. However, studying the relativistic effect, scientists have made a wrong interpretation of the difference between the clock frequency of an orbiting satellite and the clock frequency on the Earth's surface. All further studies to explain the relativistic effect were carried out according to a similar scenario, that is, only the difference in clock frequencies under conditions of different gravitational potentials was investigated. While conducting theoretical research, I found that the frequency of the signal changes along the way from the satellite to the receiver due to the influence of Earth's gravity. It was found that the readings of two high-precision clocks located at different heights will not differ after any period of time, that is, it is shown that the flow of time does not depend on the gravitational potential. It is proposed to conduct full-scale experiments, during which some high-precision clocks are sent aboard the space station, while others remain in the laboratory on the surface of the earth. It is expected that the readings of the satellite clock will be absolutely identical to the readings of the clock in the Earth laboratory.


2015 ◽  
Vol 734 ◽  
pp. 31-39
Author(s):  
Wen Yang Cai ◽  
Gao Yong Luo

The increasing demand for high precision indoor positioning in many public services has urged research to implement cost-effective systems for a rising number of applications. However, current systems with either short-range positioning technology based on wireless local area networks (WLAN) and ZigBee achieving meter-level accuracy, or ultra-wide band (UWB) and 60 GHz communication technology achieving high precision but with high cost required, could not meet the need of indoor wireless positioning. This paper presents a new method of high precision indoor positioning by autocorrelation phase measurement of spread spectrum signal utilizing carrier frequency lower than 1 GHz, thereby decreasing power emission and hardware cost. The phase measurement is more sensitive to the distance of microwave transmission than timing, thus achieving higher positioning accuracy. Simulation results demonstrate that the proposed positioning method can achieve high precision of less than 1 centimeter decreasing when various noise and interference added.


2019 ◽  
Vol 26 (3) ◽  
pp. 15-21
Author(s):  
Janusz Ćwiklak ◽  
Marek Grzegorzewski ◽  
Kamil Krasuski

Abstract The article presents the results of research into the use of the differentiation technique of BSSD (Between Satellite Single Difference) observations for the Iono-Free LC combination (Linear Combination) in the GPS system for the needs of aircraft positioning. Within the conducted investigations, a positioning algorithm for the BSSD Iono-Free LC positioning method was presented. In addition, an experimental test was conducted, in which raw observational data and GPS navigation data were exploited in order to recover the aircraft position. The examination was conducted for the Cessna 172 and the on-board dual-frequency receiver Topcon HiperPro. The experimental test presents the results of average errors of determining the position of the Cessna 172 in the XYZ geocentric frame and in the ellipsoidal BLh frame. Furthermore, the article presents the results of DOP (Dilution of Precision) coefficients, the test of the Chi square internal reliability test and the HPL and VPL confidence levels in GNSS precision approach (PA) in air transport. The calculations were performed in the original APS software (APS Aircraft Positioning Software) developed in the Department of Air Navigation of the Faculty of Aeronautics at the Polish Air Force University.


2020 ◽  
Author(s):  
Hongbo Tan ◽  
Chongyong Shen ◽  
Guiju Wu

<p>Solid Earth is affected by tidal cycles triggered by the gravity attraction of the celestial bodies. However, about 70% the Earth is covered with seawater which is also affected by the tidal forces. In the coastal areas, the ocean tide loading (OTL) can reach up to 10% of the earth tide, 90% for tilt, and 25% for strain (Farrell, 1972). Since 2007, a high-precision continuous gravity observation network in China has been established with 78 stations. The long-term high-precision tidal data of the network can be used to validate, verifying and even improve the ocean tide model (OTM).</p><p>In this paper, tidal parameters of each station were extracted using the harmonic analysis method after a careful editing of the data. 8 OTMs were used for calculating the OTL. The results show that the Root-Mean-Square of the tidal residuals (M<sub>0</sub>) vary between 0.078-1.77 μgal, and the average errors as function of the distance from the sea for near(0-60km), middle(60-1000km) and far(>1000km) stations are 0.76, 0.30 and 0.21 μgal. The total final gravity residuals (Tx) of the 8 major constituents (M<sub>2</sub>, S<sub>2</sub>, N<sub>2</sub>, K<sub>2</sub>, K<sub>1</sub>, O<sub>1</sub>, P<sub>1</sub>, Q<sub>1</sub>) for the best OTM has amplitude ranging from 0.14 to 3.45 μgal. The average efficiency for O<sub>1</sub> is 77.0%, while 73.1%, 59.6% and 62.6% for K<sub>1</sub>, M<sub>2</sub> and Tx. FES2014b provides the best corrections for O<sub>1</sub> at 12 stations, while SCHW provides the best for K<sub>1 </sub><sub>,</sub>M<sub>2</sub>and Tx at 12,8and 9 stations. For the 11 costal stations, there is not an obvious best OTM. The models of DTU10, EOT11a and TPXO8 look a litter better than FES2014b, HAMTIDE and SCHW. For the 17 middle distance stations, SCHW is the best OTM obviously. For the 7 far distance stations, FES2014b and SCHW model are the best models. But the correction efficiency is worse than the near and middle stations’.</p><p>The outcome is mixed: none of the recent OTMs performs the best for all tidal waves at all stations. Surprisingly, the Schwiderski’s model although is 40 years old with a coarse resolution of 1° x 1° is performing relative well with respect to the more recent OTM. Similar results are obtained in Southeast Asia (Francis and van Dam, 2014). It could be due to systematic errors in the surroundings seas affecting all the ocean tides models. It's difficult to detect, but invert the gravity attraction and loading effect to map the ocean tides in the vicinity of China would be one way.</p>


2021 ◽  
Author(s):  
Zongyi Luo ◽  
Jing Yu ◽  
Chunyi Lu ◽  
Shuangsong Ding ◽  
Xiang Bao ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2835 ◽  
Author(s):  
Bo Chen ◽  
Chengfa Gao ◽  
Yongsheng Liu ◽  
Puyu Sun

The Global Navigation Satellite System (GNSS) positioning technology using smartphones can be applied to many aspects of mass life, and the world’s first dual-frequency GNSS smartphone Xiaomi MI 8 represents a new trend in the development of GNSS positioning technology with mobile phones. The main purpose of this work is to explore the best real-time positioning performance that can be achieved on a smartphone without reference stations. By analyzing the GNSS raw measurements, it is found that all the three mobile phones tested have the phenomenon that the differences between pseudorange observations and carrier phase observations are not fixed, thus a PPP (precise point positioning) method is modified accordingly. Using a Xiaomi MI 8 smartphone, the modified real-time PPP positioning strategy which estimates two clock biases of smartphone was applied. The results show that using multi-GNSS systems data can effectively improve positioning performance; the average horizontal and vertical RMS positioning error are 0.81 and 1.65 m respectively (using GPS, BDS, and Galileo data); and the time required for each time period positioning errors in N and E directions to be under 1 m is less than 30s.


Sign in / Sign up

Export Citation Format

Share Document