scholarly journals A 5.8 GHz RF Receiver Front-End with 77.6 dB Dynamic Range AGC for a DSRC Transceiver

IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Reza E. Rad ◽  
Arash Hejazi ◽  
SungJin Kim ◽  
YoungGun Pu ◽  
Joon Tae Kim ◽  
...  
Keyword(s):  
2014 ◽  
Vol 2014 ◽  
pp. 1-20
Author(s):  
Bodhisatwa Sadhu ◽  
Martin Sturm ◽  
Brian M. Sadler ◽  
Ramesh Harjani

This paper explores passive switched capacitor based RF receiver front ends for spectrum sensing. Wideband spectrum sensors remain the most challenging block in the software defined radio hardware design. The use of passive switched capacitors provides a very low power signal conditioning front end that enables parallel digitization and software control and cognitive capabilities in the digital domain. In this paper, existing architectures are reviewed followed by a discussion of high speed passive switched capacitor designs. A passive analog FFT front end design is presented as an example analog conditioning circuit. Design methodology, modeling, and optimization techniques are outlined. Measurements are presented demonstrating a 5 GHz broadband front end that consumes only 4 mW power.


2013 ◽  
Vol 473 ◽  
pp. 50-53
Author(s):  
Jie Lin ◽  
Fei Yan Mu

A high accuracy BiCMOS sample and hold (S/H) circuit employed in the front end of a12bit 10 MS/s Pipeline ADC is presented. To reduce the nonlinearity error cause by the sampling switch, a signal dependent clock bootstrapping system is introduced. It is implemented using 0.6 um BiCMOS process. An 88.77 dB spurious-free dynamic range (SFDR), and a -105.20 dB total harmonic distortion (THD) are obtained.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 512
Author(s):  
Binghui Lin ◽  
Mohamed Atef ◽  
Guoxing Wang

A low-power, high-gain, and low-noise analog front-end (AFE) for wearable photoplethysmography (PPG) acquisition systems is designed and fabricated in a 0.35 μm CMOS process. A high transimpedance gain of 142 dBΩ and a low input-referred noise of only 64.2 pArms was achieved. A Sub-Hz filter was integrated using a pseudo resistor, resulting in a small silicon area. To mitigate the saturation problem caused by background light (BGL), a BGL cancellation loop and a new simple automatic gain control block are used to enhance the dynamic range and improve the linearity of the AFE. The measurement results show that a DC photocurrent component up-to-10 μA can be rejected and the PPG output swing can reach 1.42 Vpp at THD < 1%. The chip consumes a total power of 14.85 μW using a single 3.3-V power supply. In this work, the small area and efficiently integrated blocks were used to implement the PPG AFE and the silicon area is minimized to 0.8 mm × 0.8 mm.


1985 ◽  
Vol 20 (3) ◽  
pp. 688-696 ◽  
Author(s):  
E.H. Nordholt ◽  
H.C. Nauta ◽  
C.A.M. Boon

Sign in / Sign up

Export Citation Format

Share Document