Agricultural information retrieval in geographically distributed networks

Author(s):  
Chen Wei ◽  
Li Zhemin ◽  
Zhang Chao ◽  
Wang Dongjie ◽  
Wu Chen
2013 ◽  
Vol 712-715 ◽  
pp. 2556-2559
Author(s):  
Jing Li

Data Grid provides geographically distributed data resources. However, ensuring efficient and fast access to such huge and widely distributed resources is hindered by the high latencies of the Internet. Replication is adopted to address these problems. Aimed to replica creation, a model to decide replica creation opportune moment is introduced, which is based on queuing theory. Through statistical record of the arrival rate of uses, service period, and replicas already created, calculating length of queue, waiting duration time, busy period, service strength and so on, a reasonable creation opportune moment of replica can be obtained.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 821 ◽  
Author(s):  
Lujie Tang ◽  
Bing Tang ◽  
Luyu Tang ◽  
Feiyan Guo ◽  
Jiaming Zhang

Intelligent vehicles and their applications increasingly demand high computing power and low task delays, which poses significant challenges for providing reliable and efficient vehicle services. Mobile edge computing (MEC) is a new model that reduces the completion time of tasks and improves vehicle service by performing computation offloading near the moving vehicles. Considering the high-speed mobility of the vehicles and the unstable connection of the wireless cellular network, symmetric and geographically distributed edge servers are regarded as peers in a peer-to-peer (P2P) network, and a P2P-based vehicle edge offloading model is proposed in this paper to determine the optimal offloading server for the vehicle and the offloading ratio of tasks to achieve the goal of minimizing execution time. Because the edge computing infrastructure is deployed at the edge of the network, the data in the edge nodes are easily damaged or lost. Therefore, a P2P-based edge node fault tolerance mechanism is proposed to improve the reliability and fault tolerance of the system. The feasibility and effectiveness of our proposed system have been verified through simulation experiments, which greatly reduces the task completion delay.


Author(s):  
Richard E. Hartman ◽  
Roberta S. Hartman ◽  
Peter L. Ramos

We have long felt that some form of electronic information retrieval would be more desirable than conventional photographic methods in a high vacuum electron microscope for various reasons. The most obvious of these is the fact that with electronic data retrieval the major source of gas load is removed from the instrument. An equally important reason is that if any subsequent analysis of the data is to be made, a continuous record on magnetic tape gives a much larger quantity of data and gives it in a form far more satisfactory for subsequent processing.


Author(s):  
Hilton H. Mollenhauer

Many factors (e.g., resolution of microscope, type of tissue, and preparation of sample) affect electron microscopical images and alter the amount of information that can be retrieved from a specimen. Of interest in this report are those factors associated with the evaluation of epoxy embedded tissues. In this context, informational retrieval is dependant, in part, on the ability to “see” sample detail (e.g., contrast) and, in part, on tue quality of sample preservation. Two aspects of this problem will be discussed: 1) epoxy resins and their effect on image contrast, information retrieval, and sample preservation; and 2) the interaction between some stains commonly used for enhancing contrast and information retrieval.


Author(s):  
Fox T. R. ◽  
R. Levi-Setti

At an earlier meeting [1], we discussed information retrieval in the scanning transmission ion microscope (STIM) compared with the electron microscope at the same energy. We treated elastic scattering contrast, using total elastic cross sections; relative damage was estimated from energy loss data. This treatment is valid for “thin” specimens, where the incident particles suffer only single scattering. Since proton cross sections exceed electron cross sections, a given specimen (e.g., 1 μg/cm2 of carbon at 25 keV) may be thin for electrons but “thick” for protons. Therefore, we now extend our previous analysis to include multiple scattering. Our proton results are based on the calculations of Sigmund and Winterbon [2], for 25 keV protons on carbon, using a Thomas-Fermi screened potential with a screening length of 0.0226 nm. The electron results are from Crewe and Groves [3] at 30 keV.


Sign in / Sign up

Export Citation Format

Share Document