Design and implementation of high resolution, high linearity temperature sensor in CMOS process

Author(s):  
C. Felini ◽  
M. Merenda ◽  
F. G. Della Corte
2014 ◽  
Vol 678 ◽  
pp. 497-500
Author(s):  
Xing Fa Huang ◽  
Rong Bin Hu ◽  
Liang Li

With respect to the application of high-speed, high-resolution A/D converter, the design and implementation of a CMOS input buffer is introduced. The buffer features high-speed and high-linearity. Its performances have been verified in a 14-bit 250MSPS pipelined A/D converter which is developed in 0.18um CMOS-based process technology. The simulation shows that the SFDR of the buffer is up to 104dB at an input clock of 250MHz with an input signal of 25MHz.


2015 ◽  
Vol 24 (10) ◽  
pp. 1550155 ◽  
Author(s):  
Di Zhu ◽  
Liter Siek

This paper presents an energy-efficient and high linearity temperature sensor based on the architecture of a simple on-chip oscillator. A self-calibrated block is proposed to compensate the non-linearities of the on-chip oscillator due to PVT variations. In this manner, this on-chip oscillator-based temperature sensor has superior performance over the conventional inverter-chain-based types. In order to generalize the application, no highly linear temperature coefficient resistors are being utilized. The entire circuit is simple and easy to be scaled down. According to the verifications in 65 nm CMOS process, with one-point calibration, this temperature sensor can achieve an inaccuracy within ±1°C in the temperature range from -55°C to 125°C, with a power consumption of only 0.6 μA under 1.2 V supply voltages.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850116
Author(s):  
Yuanxin Bao ◽  
Wenyuan Li

A high-speed low-supply-sensitivity temperature sensor is presented for thermal monitoring of system on a chip (SoC). The proposed sensor transforms the temperature to complementary to absolute temperature (CTAT) frequency and then into digital code. A CTAT voltage reference supplies a temperature-sensitive ring oscillator, which enhances temperature sensitivity and conversion rate. To reduce the supply sensitivity, an operational amplifier with a unity gain for power supply is proposed. A frequency-to-digital converter with piecewise linear fitting is used to convert the frequency into the digital code corresponding to temperature and correct nonlinearity. These additional characteristics are distinct from the conventional oscillator-based temperature sensors. The sensor is fabricated in a 180[Formula: see text]nm CMOS process and occupies a small area of 0.048[Formula: see text]mm2 excluding bondpads. After a one-point calibration, the sensor achieves an inaccuracy of [Formula: see text][Formula: see text]1.5[Formula: see text]C from [Formula: see text]45[Formula: see text]C to 85[Formula: see text]C under a supply voltage of 1.4–2.4[Formula: see text]V showing a worst-case supply sensitivity of 0.5[Formula: see text]C/V. The sensor maintains a high conversion rate of 45[Formula: see text]KS/s with a fine resolution of 0.25[Formula: see text]C/LSB, which is suitable for SoC thermal monitoring. Under a supply voltage of 1.8[Formula: see text]V, the maximum energy consumption per conversion is only 7.8[Formula: see text]nJ at [Formula: see text]45[Formula: see text]C.


2020 ◽  
Vol 38 (7) ◽  
pp. 2010-2014 ◽  
Author(s):  
Jia Shi ◽  
Fan Yang ◽  
Wei Xu ◽  
Degang Xu ◽  
Hua Bai ◽  
...  

2012 ◽  
Vol 229-231 ◽  
pp. 1507-1510
Author(s):  
Xiang Ning Fan ◽  
Hao Zheng ◽  
Yu Tao Sun ◽  
Xiang Yan

In this paper, a 12-bit 100MS/s pipelined ADC is designed. Capacitance flip-around structure is used in sample and hold circuit, and bootstrap structure is adopted in sampling switch which has high linearity. Progressively decreasing technology is used to reduce power consumption and circuit area, where 2.5bit/stage structure is used in the first two stages, 1.5bit/stage structure is used for 3rd to 8th stages, and at the end of the circuit is a 2bit-flash ADC. Digital calibration is designed to eliminate the offset of comparators. Switched-capacitor dynamic comparator structure is used to further reduce the power consumption. The ADC is implemented by using TSMC 0.18m CMOS process with die area be 1.23mm×2.3mm. SNDR and SFDR are 65dB and 71.3dB, when sampling at 100MHz sampling clock. The current of the circuit is 96mA under 1.8V power supply.


2010 ◽  
Vol 18 (21) ◽  
pp. 22215 ◽  
Author(s):  
Gun-Duk Kim ◽  
Hak-Soon Lee ◽  
Chang-Hyun Park ◽  
Sang-Shin Lee ◽  
Boo Tak Lim ◽  
...  

2013 ◽  
Vol 336-338 ◽  
pp. 216-220
Author(s):  
Chun Chi Chen ◽  
Keng Chih Liu ◽  
Shih Hao Lin

This paper presents a time-domain CMOS oscillator-based temperature sensor with one-point calibration for test cost reduction. Compared with the former CMOS sensors with linear delay lines, the proposed work composed of a temperature-to-pulse generator with adjustable time gain and a time-to-digital converter (TDC) can achieve lower circuit complexity and smaller area. A temperature-dependent oscillator for temperature sensing was used to generate the period width proportional to absolute temperature (PTAT). With the help of calibration circuit, an adjustable-gain time amplifier was adopted to dynamically adjust the amplified width that was converted by the TDC into the corresponding digital code. After calibration, the fluctuation of the sensor output with process variation can be greatly reduced. The maximum inaccuracy after one-point calibration for six package chips was 1.6 °C within a 0 80 °C temperature range. The proposed sensor fabricated in a 0.35-μm CMOS process occupied a chip area of merely 0.07 mm2, achieved a fine resolution of 0.047 °C/LSB, and consumed a low power of 25 μW@10 samples/s.


Sign in / Sign up

Export Citation Format

Share Document