Calculation of the radar ambiguity function from time-domain measurement data for real-time, amplifier-in-the-loop waveform optimization

Author(s):  
Matthew Fellows ◽  
Charles Baylis ◽  
Lawrence Cohen ◽  
Robert J. Marks
Author(s):  
Christian Luksch ◽  
Lukas Prost ◽  
Michael Wimmer

We present a real-time rendering technique for photometric polygonal lights. Our method uses a numerical integration technique based on a triangulation to calculate noise-free diffuse shading. We include a dynamic point in the triangulation that provides a continuous near-field illumination resembling the shape of the light emitter and its characteristics. We evaluate the accuracy of our approach with a diverse selection of photometric measurement data sets in a comprehensive benchmark framework. Furthermore, we provide an extension for specular reflection on surfaces with arbitrary roughness that facilitates the use of existing real-time shading techniques. Our technique is easy to integrate into real-time rendering systems and extends the range of possible applications with photometric area lights.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Hongyun Xie ◽  
Haixia Gu ◽  
Chao Lu ◽  
Jialin Ping

Real-time Simulation (RTS) has long been used in the nuclear power industry for operator training and engineering purposes. And, online simulation (OLS) is based on RTS and with connection to the plant information system to acquire the measurement data in real time for calibrating the simulation models and following plant operation, for the purpose of analyzing plant events and providing indicative signs of malfunctioning. OLS has been applied in certain industries to improve safety and efficiency. However, it is new to the nuclear power industry. A research project was initiated to implement OLS to assist operators in certain critical nuclear power plant (NPP) operations to avoid faulty conditions. OLS models were developed to simulate the reactor core physics and reactor/steam generator thermal hydraulics in real time, with boundary conditions acquired from plant information system, synchronized in real time. The OLS models then were running in parallel with recorded plant events to validate the models, and the results are presented.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Qilong Xue ◽  
Ruihe Wang ◽  
Baolin Liu ◽  
Leilei Huang

In the oil and gas drilling engineering, measurement-while-drilling (MWD) system is usually used to provide real-time monitoring of the position and orientation of the bottom hole. Particularly in the rotary steerable drilling technology and application, it is a challenge to measure the spatial attitude of the bottom drillstring accurately in real time while the drillstring is rotating. A set of “strap-down” measurement system was developed in this paper. The triaxial accelerometer and triaxial fluxgate were installed near the bit, and real-time inclination and azimuth can be measured while the drillstring is rotating. Furthermore, the mathematical model of the continuous measurement was established during drilling. The real-time signals of the accelerometer and the fluxgate sensors are processed and analyzed in a time window, and the movement patterns of the drilling bit will be observed, such as stationary, uniform rotation, and stick–slip. Different signal processing methods will be used for different movement patterns. Additionally, a scientific approach was put forward to improve the solver accuracy benefit from the use of stick–slip vibration phenomenon. We also developed the Kalman filter (KF) to improve the solver accuracy. The actual measurement data through drilling process verify that the algorithm proposed in this paper is reliable and effective and the dynamic measurement errors of inclination and azimuth are effectively reduced.


2014 ◽  
Vol 53 (7S) ◽  
pp. 07KC14 ◽  
Author(s):  
Tan Yiyu ◽  
Yasushi Inoguchi ◽  
Yukinori Sato ◽  
Makoto Otani ◽  
Yukio Iwaya ◽  
...  

2021 ◽  
Vol 70 ◽  
pp. 1-12
Author(s):  
Meiyan Zhang ◽  
Qisong Wang ◽  
Dan Liu ◽  
Boqi Zhao ◽  
Jiaze Tang ◽  
...  

Author(s):  
Nobutaka Tsujiuchi ◽  
Yuichi Matsumura ◽  
Takayuki Koizumi

Abstract In this paper, we propose the new method to identify the Operating Deflection Shapes (ODSs) from the measurement data of time domain. At first, we present the identification scheme of ODSs based on a state-space model. Then the scheme is extended to identify the ODSs adaptively for the time-varying systems by using the URV Decomposition (URVD). Proposed scheme is able to decompose the deformation of a structure under operating condition into the underlying superposition of well excited frequency components. This paper introduces the algorithm and shows the effectiveness of our proposed scheme applyed for both synthesized and experimental data.


Sign in / Sign up

Export Citation Format

Share Document