Membrane-type pin protector for pin grid array devices

Author(s):  
S.-P.T. Wang ◽  
P. Ogden
Keyword(s):  
1996 ◽  
Vol 34 (9) ◽  
pp. 149-156 ◽  
Author(s):  
C. Ratanatamskul ◽  
K. Yamamoto ◽  
T. Urase ◽  
S. Ohgaki

The recent development of new generation LPRO or nanofiltration membranes have received attraction for application in the field of wastewater and water treatment through an increasingly stringent regulation for drinking purpose and water reclamation. In this research, the application on treatment of anionic pollutants (nitrate, nitrite, phosphate, sulfate and chloride ions) have been investigated as functions of transmembrane pressure, crossflow velocity and temperature under very much lower pressure operation range (0.49 to 0.03 MPa) than any other previous research used to do. Negative rejection was also observed under very much low range of operating pressure in the case of membrane type NTR-7250. Moreover, the extended Nernst-Planck model was used for analysis of the experimental data of the rejection of nitrate, nitrite and chloride ions in single solution by considering effective charged density of the membranes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yu-An Chen ◽  
Yong-Da Sie ◽  
Tsung-Yun Liu ◽  
Hsiang-Ling Kuo ◽  
Pei-Yi Chou ◽  
...  

AbstractMetastatic cancer cells are frequently deficient in WWOX protein or express dysfunctional WWOX (designated WWOXd). Here, we determined that functional WWOX-expressing (WWOXf) cells migrate collectively and expel the individually migrating WWOXd cells. For return, WWOXd cells induces apoptosis of WWOXf cells from a remote distance. Survival of WWOXd from the cell-to-cell encounter is due to activation of the survival IκBα/ERK/WWOX signaling. Mechanistically, cell surface epitope WWOX286-299 (repl) in WWOXf repels the invading WWOXd to undergo retrograde migration. However, when epitope WWOX7-21 (gre) is exposed, WWOXf greets WWOXd to migrate forward for merge. WWOX binds membrane type II TGFβ receptor (TβRII), and TβRII IgG-pretreated WWOXf greet WWOXd to migrate forward and merge with each other. In contrast, TβRII IgG-pretreated WWOXd loses recognition by WWOXf, and WWOXf mediates apoptosis of WWOXd. The observatons suggest that normal cells can be activated to attack metastatic cancer cells. WWOXd cells are less efficient in generating Ca2+ influx and undergo non-apoptotic explosion in response to UV irradiation in room temperature. WWOXf cells exhibit bubbling cell death and Ca2+ influx effectively caused by UV or apoptotic stress. Together, membrane WWOX/TβRII complex is needed for cell-to-cell recognition, maintaining the efficacy of Ca2+ influx, and control of cell invasiveness.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4742
Author(s):  
Katsushige Inada ◽  
Hiroshi Kojima ◽  
Yukiko Cho-Isoda ◽  
Ryo Tamura ◽  
Gaku Imamura ◽  
...  

The endogenous volatile organic compounds (VOCs) in exhaled breath can be promising biomarkers for various diseases including cancers. An olfactory sensor has a possibility for extracting a specific feature from collective variations of the related VOCs with a certain health condition. For this approach, it is important to establish a feasible protocol for sampling exhaled breath in practical conditions to provide reproducible signal features. Here we report a robust protocol for the breath analysis, focusing on total expiratory breath measured by a Membrane-type Surface stress Sensor (MSS), which possesses practical characteristics for artificial olfactory systems. To assess its reproducibility, 83 exhaled breath samples were collected from one subject throughout more than a year. It has been confirmed that the reduction of humidity effects on the sensing signals either by controlling the humidity of purging room air or by normalizing the signal intensities leads to reasonable reproducibility verified by statistical analyses. We have also demonstrated the applicability of the protocol for detecting a target material by discriminating exhaled breaths collected from different subjects with pre- and post-alcohol ingestion on different occasions. This simple yet reproducible protocol based on the total expiratory breath measured by the MSS olfactory sensors will contribute to exploring the possibilities of clinical applications of breath diagnostics.


Sign in / Sign up

Export Citation Format

Share Document