scholarly journals Statistical Evaluation of Total Expiratory Breath Samples Collected throughout a Year: Reproducibility and Applicability toward Olfactory Sensor-Based Breath Diagnostics

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4742
Author(s):  
Katsushige Inada ◽  
Hiroshi Kojima ◽  
Yukiko Cho-Isoda ◽  
Ryo Tamura ◽  
Gaku Imamura ◽  
...  

The endogenous volatile organic compounds (VOCs) in exhaled breath can be promising biomarkers for various diseases including cancers. An olfactory sensor has a possibility for extracting a specific feature from collective variations of the related VOCs with a certain health condition. For this approach, it is important to establish a feasible protocol for sampling exhaled breath in practical conditions to provide reproducible signal features. Here we report a robust protocol for the breath analysis, focusing on total expiratory breath measured by a Membrane-type Surface stress Sensor (MSS), which possesses practical characteristics for artificial olfactory systems. To assess its reproducibility, 83 exhaled breath samples were collected from one subject throughout more than a year. It has been confirmed that the reduction of humidity effects on the sensing signals either by controlling the humidity of purging room air or by normalizing the signal intensities leads to reasonable reproducibility verified by statistical analyses. We have also demonstrated the applicability of the protocol for detecting a target material by discriminating exhaled breaths collected from different subjects with pre- and post-alcohol ingestion on different occasions. This simple yet reproducible protocol based on the total expiratory breath measured by the MSS olfactory sensors will contribute to exploring the possibilities of clinical applications of breath diagnostics.

Lung ◽  
2017 ◽  
Vol 195 (2) ◽  
pp. 247-254 ◽  
Author(s):  
Yu-ichi Yamada ◽  
Gen Yamada ◽  
Mitsuo Otsuka ◽  
Hirotaka Nishikiori ◽  
Kimiyuki Ikeda ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rosa Alba Sola Martínez ◽  
José María Pastor Hernández ◽  
Gema Lozano Terol ◽  
Julia Gallego-Jara ◽  
Luis García-Marcos ◽  
...  

AbstractThe noninvasive diagnosis and monitoring of high prevalence diseases such as cardiovascular diseases, cancers and chronic respiratory diseases are currently priority objectives in the area of health. In this regard, the analysis of volatile organic compounds (VOCs) has been identified as a potential noninvasive tool for the diagnosis and surveillance of several diseases. Despite the advantages of this strategy, it is not yet a routine clinical tool. The lack of reproducible protocols for each step of the biomarker discovery phase is an obstacle of the current state. Specifically, this issue is present at the data preprocessing step. Thus, an open source workflow for preprocessing the data obtained by the analysis of exhaled breath samples using gas chromatography coupled with single quadrupole mass spectrometry (GC/MS) is presented in this paper. This workflow is based on the connection of two approaches to transform raw data into a useful matrix for statistical analysis. Moreover, this workflow includes matching compounds from breath samples with a spectral library. Three free packages (xcms, cliqueMS and eRah) written in the language R are used for this purpose. Furthermore, this paper presents a suitable protocol for exhaled breath sample collection from infants under 2 years of age for GC/MS.


2016 ◽  
Vol 42 (2) ◽  
pp. 143-145 ◽  
Author(s):  
Silvano Dragonieri ◽  
Vitaliano Nicola Quaranta ◽  
Pierluigi Carratu ◽  
Teresa Ranieri ◽  
Onofrio Resta

We aimed to investigate the effects of age and gender on the profile of exhaled volatile organic compounds. We evaluated 68 healthy adult never-smokers, comparing them by age and by gender. Exhaled breath samples were analyzed by an electronic nose (e-nose), resulting in "breathprints". Principal component analysis and canonical discriminant analysis showed that older subjects (≥ 50 years of age) could not be distinguished from younger subjects on the basis of their breathprints, as well as that the breathprints of males could not distinguished from those of females (cross-validated accuracy, 60.3% and 57.4%, respectively).Therefore, age and gender do not seem to affect the overall profile of exhaled volatile organic compounds measured by an e-nose.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3677 ◽  
Author(s):  
Carlos Toledo-Hernández ◽  
Claudia P. Ruiz-Diaz ◽  
Liz M. Díaz-Vázquez ◽  
Vanessa Santiago-Cárdenas ◽  
Derick N. Rosario-Berrios ◽  
...  

Background The roles of gorgonian sclerites as structural components and predator deterrents have been widely studied. Yet their role as barriers against microbes has only recently been investigated, and even less is known about the diversity and roles of the chemical compounds associated with sclerites. Methods Here, we examine the semi-volatile organic compound fraction (SVOCs) associated with sclerites from healthy and diseased Gorgonia ventalina sea fan corals to understand their possible role as a stress response or in defense of infection. We also measured the oxidative potential of compounds from diseased and healthy G. ventalina colonies. Results The results showed that sclerites harbor a great diversity of SVOCs. Overall, 70 compounds were identified, the majority of which are novel with unknown biological roles. The majority of SVOCs identified exhibit multiple immune-related roles including antimicrobial and radical scavenging functions. The free radical activity assays further confirmed the anti-oxidative potential of some these compounds. The anti-oxidative activity was, nonetheless, similar across sclerites regardless of the health condition of the colony, although sclerites from diseased sea fans display slightly higher anti-oxidative activity than the healthy ones. Discussion Sclerites harbor great SVOCs diversity, the majority of which are novel to sea fans or any other corals. Yet the scientific literature consulted showed that the roles of compounds found in sclerites vary from antioxidant to antimicrobial compounds. However, this study fell short in determine the origin of the SVOCs identified, undermining our capacity to determine the biological roles of the SVOCs on sclerites and sea fans.


2021 ◽  
Author(s):  
Ahmed Mehaney ◽  
Hussein A. Elsayed ◽  
Ashour M. Ahmed

Abstract Detection of blood-carried volatile organic compounds (VOCs) existing in the exhaled breath of human is an attractive research point for noninvasive diagnosis of diseases. In this research, we introduce a novel application of photonic crystals (PCs) for the detection of isoprene traces in the exhaled breath as a biomarker for liver fibrosis. This idea is introduced for the first time according to the best of our knowledge. The proposed sensor structure is a one-dimensional (1D) PC constructed from a multilayer stack of two dielectric materials covered with an air cavity layer filled with the dry exhaled breath (DEB) and a thin metallic layer of Au is attached on the top surface. Hence, the proposed sensor is configured as, [prism/Au/air cavity/(GaN/SiO2)10]. The transfer matrix method and the Drude model are adopted to calculate the numerical simulations and reflection spectra of the design. The essential key for sensing isoprene levels is the resonant optical Tamm plasmon (TP) states within the photonic bandgap. The obtained numerical results are promising such as high sensitivity (S) of 0.321 nm/ppm or 278720 nm/RIU. This technique can be reducing the risk of infection during the taking of blood samples by syringe. Also, it can prevent the pain of patients. Finally, this work opens the door for the detection of many diseases by analyzing the breaths of patients based on photonic crystals.


Sign in / Sign up

Export Citation Format

Share Document