ANN Classification of Female Breast Tumor Type Prediction Using EIM Parameters

Author(s):  
Shahriar Kabir ◽  
Mohammad Ahad
IRBM ◽  
2021 ◽  
Author(s):  
R. Karthik ◽  
R. Menaka ◽  
G.S. Kathiresan ◽  
M. Anirudh ◽  
M. Nagharjun

Author(s):  
Keith L. Ligon ◽  
Karima Mokhtari ◽  
Thomas W. Smith

This chapter presents the most up-to-date classification of tumors of the nervous system, based on the histological appearance of the neoplasm and also on information derived from cytogenetics and molecular biology, now recognized worldwide as increasingly important for more precise diagnosis, prognosis, and therapeutic guidance. The chapter provides a detailed morphologic description of each major tumor type, with numerous illustrations of macroscopic and microscopic lesions. First we consider primary tumors of the nervous system, including those derived from neuroepithelial tissue (astrocytic, oligodendroglial, ependymal, neuronal, and glioneuronal), pineal tissue, peripheral nerve sheath, and meninges. Next lymphomas, hematopoietic neoplasms, and secondary (metastatic) neoplasms are described.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Hong Zhu ◽  
Qianhao Fang ◽  
Hanzhi He ◽  
Junfeng Hu ◽  
Daihong Jiang ◽  
...  

Meningioma is the second most commonly encountered tumor type in the brain. There are three grades of meningioma by the standards of the World Health Organization. Preoperative grade prediction of meningioma is extraordinarily important for clinical treatment planning and prognosis evaluation. In this paper, we present a new deep learning model for assisting automatic prediction of meningioma grades to reduce the recurrence of meningioma. Our model is based on an improved LeNet-5 model of convolutional neural network (CNN) and does not require the extraction of the diseased tissue, which can greatly enhance the efficiency. To address the issue of insufficient and unbalanced clinical data of meningioma images, we use an oversampling technique which allows us to considerably improve the accuracy of classification. Experiments on large clinical datasets show that our model can achieve quite high accuracy (i.e., as high as 83.33%) for the classification of meningioma images.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Mengwan Wei ◽  
Yongzhao Du ◽  
Xiuming Wu ◽  
Qichen Su ◽  
Jianqing Zhu ◽  
...  

The classification of benign and malignant based on ultrasound images is of great value because breast cancer is an enormous threat to women’s health worldwide. Although both texture and morphological features are crucial representations of ultrasound breast tumor images, their straightforward combination brings little effect for improving the classification of benign and malignant since high-dimensional texture features are too aggressive so that drown out the effect of low-dimensional morphological features. For that, an efficient texture and morphological feature combing method is proposed to improve the classification of benign and malignant. Firstly, both texture (i.e., local binary patterns (LBP), histogram of oriented gradients (HOG), and gray-level co-occurrence matrixes (GLCM)) and morphological (i.e., shape complexities) features of breast ultrasound images are extracted. Secondly, a support vector machine (SVM) classifier working on texture features is trained, and a naive Bayes (NB) classifier acting on morphological features is designed, in order to exert the discriminative power of texture features and morphological features, respectively. Thirdly, the classification scores of the two classifiers (i.e., SVM and NB) are weighted fused to obtain the final classification result. The low-dimensional nonparameterized NB classifier is effectively control the parameter complexity of the entire classification system combine with the high-dimensional parametric SVM classifier. Consequently, texture and morphological features are efficiently combined. Comprehensive experimental analyses are presented, and the proposed method obtains a 91.11% accuracy, a 94.34% sensitivity, and an 86.49% specificity, which outperforms many related benign and malignant breast tumor classification methods.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e13583-e13583
Author(s):  
Andrew Jacob Brenner ◽  
Raul Collazo ◽  
Catherine A. Schnabel ◽  
F Anthony Greco

e13583 Background: Nearly 200,000 patients are diagnosed with brain metastases in the US annually. Advances in targeted therapies make definitive diagnosis of the primary tumor type important but can be challenging in many patients. The 92-gene assay is a validated gene expression classifier of 50 tumor types/subtypes for patients with uncertain diagnoses. Results from a clinical series of brain biopsies and potential impact on treatment were evaluated. Methods: An IRB-approved, de-identified database of clinical and molecular information from biopsies (N = 24,486) submitted for testing with the 92-gene assay (CancerTYPE ID, Biotheranostics, Inc.) as part of routine care were reviewed. Descriptive analysis included patient demographics and molecular diagnoses. Results: Analysis included 464 brain biopsies. A molecular diagnosis was provided in 433 (93.3%) tested ( < 5% assay failure rate) with 24 different tumor types. Six primary tumor types made up the majority (67.4%) with almost one-third of the molecular predictions being Lung (31.2%), followed by Neuroendocrine (NET) (9.9%), Sarcoma (7.9%), Skin (6.4%), Gastroesophageal (6.2%), and Urinary bladder (5.8%). All of these 6 tumor types, for which activity in the CNS has been documented, have immune checkpoint inhibitors or other targeted therapies approved in selected cases by the US Federal Drug Administration (FDA) (Table). Conclusions: Molecular classification of brain metastases can identify distinct tumor types for which there are FDA approved targeted medications. Improving diagnostic precision with the 92-gene assay helps identify a subset of therapy-responsive metastatic brain tumors, thus improving therapy and possibly providing better outcomes and survival. [Table: see text]


2010 ◽  
Author(s):  
Xin-guang Chen ◽  
A-qing Xu ◽  
Hong-qin Yang ◽  
Yu-hua Wang ◽  
Shu-sen Xie

Sign in / Sign up

Export Citation Format

Share Document