A sub-surface metallization post-process IC module for RF technology

Author(s):  
K.T. Ng ◽  
N.P. Pham ◽  
B. Rejaei ◽  
P.M. Sarro ◽  
J.N. Burghartz
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2197
Author(s):  
Nayara Rodrigues Marques Sakiyama ◽  
Jurgen Frick ◽  
Timea Bejat ◽  
Harald Garrecht

Predicting building air change rates is a challenge for designers seeking to deal with natural ventilation, a more and more popular passive strategy. Among the methods available for this task, computational fluid dynamics (CFD) appears the most compelling, in ascending use. However, CFD simulations require a range of settings and skills that inhibit its wide application. With the primary goal of providing a pragmatic CFD application to promote wind-driven ventilation assessments at the design phase, this paper presents a study that investigates natural ventilation integrating 3D parametric modeling and CFD. From pre- to post-processing, the workflow addresses all simulation steps: geometry and weather definition, including incident wind directions, a model set up, control, results’ edition, and visualization. Both indoor air velocities and air change rates (ACH) were calculated within the procedure, which used a test house and air measurements as a reference. The study explores alternatives in the 3D design platform’s frame to display and compute ACH and parametrically generate surfaces where air velocities are computed. The paper also discusses the effectiveness of the reference building’s natural ventilation by analyzing the CFD outputs. The proposed approach assists the practical use of CFD by designers, providing detailed information about the numerical model, as well as enabling the means to generate the cases, visualize, and post-process the results.


2021 ◽  
Vol 117 ◽  
pp. 111122
Author(s):  
Zuoren Xiong ◽  
Xinyan Ma ◽  
Yingbin Zhang ◽  
Hua Zhao

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 681
Author(s):  
Monika Sterczyńska ◽  
Marek Zdaniewicz ◽  
Katarzyna Wolny-Koładka

During the production of beer, and especially beer wort, the main wastes are spent grain and hot trub, i.e., the so-called “hot break.” Combined with yeast after fermentation, they represent the most valuable wastes. Hot trub is also one of the most valuable by-products. Studies on the chemical composition of these sediments and their rheological properties as waste products will contribute to their effective disposal and even further use as valuable pharmaceutical and cosmetic raw materials. So far, hot trub has been studied for morphology and particle distribution depending on the raw material composition and beer wort extract. However, there are no preliminary studies on the rheological properties of hot trub and hops. In particular, no attention has yet been paid to the dependence of these properties on the hop variety or different protein sources used. The aim of this study was to examine the effect of different hopping methods on hot trub viscosity and beer wort physicochemical parameters. Additionally, the hop solutions were measured at different temperatures. A microbiological analysis of hop sediments was also performed to determine the post-process survival of selected microorganisms in these wastes. For manufacturers of pumps used in the brewing industry, the most convenient material is that of the lowest viscosity. Low viscosity hot trub can be removed at lower velocities, which reduces costs and simplifies washing and transport. The sediments also had similar equilibrium viscosity values at high shear rates.


2009 ◽  
Vol 1192 ◽  
Author(s):  
Luke M. Davis ◽  
Tyler S. Stukenbroeker ◽  
Christopher J. Abelt ◽  
Joseph L. Scott ◽  
Evguenia Orlova ◽  
...  

AbstractA straightforward ambient temperature route to the fabrication of surface silver-metallized polyimide films is described. Silver(I) trifluoromethane sulfonate and a polyimide, derived from 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and an equimolar amount of 4,4'-oxydianiline (ODA) and 3,5-diaminobenzoic acid (DABA), were dissolved together in dimethylacetamide. Silver(I)-doped films were prepared at thicknesses of 25-50 microns and depleted of solvent by evaporation. The silver(I)-containing films were then treated with aqueous reducing agents, which brought forth silvered films exhibiting conductivity on the order of bulk polycrystalline silver and good specular reflectivity.


Author(s):  
R. N. V. C. Virinthorn ◽  
M. Chandrasekaran ◽  
K. Wang ◽  
K. L. Goh

AbstractWe described a technique of a post-process stage to partially remove the poly(vinyl alcohol) (PVA) binder in Poly(lactic-co-glycolic acid) (PLGA) dental scaffolds. The scaffolds were exposed to ultrasonic waves while immersed in an ethanol/acetone solvent mixture that possessed both polar and nonpolar properties. A factorial experiment was conducted in which the scaffolds were treated to three levels of sonication power (pW): 0, 20% (22 W) and 40% (44 W), and soaking duration (t): 5, 15, and 30 min. The treated scaffolds were characterized by FT-IR, optical microscopy, and mechanical (compressive) testing. FT-IR revealed that the amount of PVA decreased with increasing pW and t. Two-way ANOVA revealed that increasing pW and t, respectively, resulted in increasing scaffold surface area to volume (SVR). Sonication and solvent caused structural damage (i.e., unevenness) on the scaffold surface, but the damage was minimal at 20% pW and 30 min. The optimal values of pW and t resulting in enhanced fracture strength, strain and toughness were 20% and 30 min, respectively, which corroborated the findings of minimal structural damage. However, sonication had no significant effects on the scaffold stiffness. Mechanistic analysis of the effects of sonication predicted that the ultrasonic energy absorbed by the scaffold was sufficient to disrupt the van Der Waals bonds between the PVA and PLGA but not high enough to disrupt the covalent bonds within the PLGA. This technique is promising as it can partially remove the PVA from the scaffold, and mitigate problematic issues down the line, such as thermal degradation during sterilization, and undue delay/variability in biodegradation.


2021 ◽  
pp. 1-14
Author(s):  
Han He ◽  
Yehua Jiang ◽  
Juanjian Ru ◽  
Rong Zhou ◽  
Yixin Hua

2021 ◽  
Vol 1 ◽  
pp. 2841-2850
Author(s):  
Didunoluwa Obilanade ◽  
Christo Dordlofva ◽  
Peter Törlind

AbstractOne often-cited benefit of using metal additive manufacturing (AM) is the possibility to design and produce complex geometries that suit the required function and performance of end-use parts. In this context, laser powder bed fusion (LPBF) is one suitable AM process. Due to accessibility issues and cost-reduction potentials, such ‘complex’ LPBF parts should utilise net-shape manufacturing with minimal use of post-process machining. The inherent surface roughness of LPBF could, however, impede part performance, especially from a structural perspective and in particular regarding fatigue. Engineers must therefore understand the influence of surface roughness on part performance and how to consider it during design. This paper presents a systematic literature review of research related to LPBF surface roughness. In general, research focuses on the relationship between surface roughness and LPBF build parameters, material properties, or post-processing. Research on design support on how to consider surface roughness during design for AM is however scarce. Future research on such supports is therefore important given the effects of surface roughness highlighted in other research fields.


Sign in / Sign up

Export Citation Format

Share Document