Three-dimensional guidance law of impact-time-control under time-varying velocity

Author(s):  
Li Wen ◽  
Lin Ping ◽  
Wang Liang ◽  
Li Huabin ◽  
Gao Jie
Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 231
Author(s):  
Zhanyuan Jiang ◽  
Jianquan Ge ◽  
Qiangqiang Xu ◽  
Tao Yang

The paper proposes a two-dimensional impact time control cooperative guidance law under constant velocity and a three-dimensional impact time control cooperative guidance law under time-varying velocity, which can both improve the penetration ability and combat effectiveness of multi-missile systems and adapt to the complex and variable future warfare. First, a more accurate time-to-go estimation method is proposed, and based on which a modified proportional navigational guidance (MPNG) law with impact time constraint is designed in this paper, which is also effective when the initial leading angle is zero. Second, adopting cooperative guidance architecture with centralized coordination, using the MPNG law as the local guidance, and the desired impact time as the coordination variables, a two-dimensional impact time control cooperative guidance law under constant velocity is designed. Finally, a method of solving the expression of velocity is derived, and the analytic function of velocity with respect to time is given, a three-dimensional impact time control cooperative guidance law under time-varying velocity based on desired impact time is designed. Numerical simulation results verify the feasibility and applicability of the methods.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Jun Zhou ◽  
Yang Wang ◽  
Bin Zhao

The problem of impact-time-control guidance (ITCG) for the homing missile with time-varying velocity is addressed. First, a novel ITCG law is proposed based on the integral sliding mode control (ISMC) method. Then, a salvo attack algorithm is designed based on the proposed guidance law. The performances of the conventional ITCG laws strongly depend on the accuracy of the estimated time-to-go (TTG). However, the accurate estimated TTG can be obtained only if the missile velocity is constant. The conventional ITCG laws were designed under the assumption that the missile velocity is constant. The most attractive feature of this work is that the newly proposed ITCG law relaxes the constant velocity assumption, which only needs the variation range of the missile velocity. Finally, the numerical simulation demonstrates the effectiveness of the proposed method.


Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 251
Author(s):  
Shuai Ma ◽  
Xugang Wang ◽  
Zhongyuan Wang

The problem of impact time control guidance with field-of-view constraint is addressed based on time-varying sliding mode control. The kinematic conditions that satisfy the impact time control with field-of-view constraint are defined, and then a novel time-varying sliding surface is constructed to achieve the defined conditions. The sliding surface contains two unknown coefficients: one is tuned to achieve the global sliding surface to satisfy the impact time constraint and zero miss distance, and the other is tuned to guarantee the field-of-view constraint. The guidance law is designed to ensure the realization of the global sliding mode. On this basis, the guidance law is modified to a closed-loop structure, and the maximum detection capability of the seeker is utilized to a greater extent. Under the proposed guidance law, neither the small angle assumption nor time-to-go estimation is needed. The guidance command is continuous and converges to 0 at the desired impact time. Simulation results demonstrate the effectiveness and superiority of the proposed guidance law.


Drones ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 100
Author(s):  
Zhanyuan Jiang ◽  
Jianquan Ge ◽  
Qiangqiang Xu ◽  
Tao Yang

Aiming at the problem that multiple Unmanned Aerial Vehicles (UAVs) attack the stationary target cooperatively under time-varying velocity, the cooperative guidance law with finite time convergence on two-dimensional plan and the three-dimensional cooperative guidance laws with impact time constraint are designed separately in this paper. Firstly, based on the relative motion equation between UAV and target on two-dimensional plane, the time cooperative guidance model of multiple UAVs is established. Then based on the consistency theory and graph theory, a distributed time cooperative guidance law is designed, which can ensure that the impact time of all UAVs can be quickly consistent in a limited time. Next, the cooperative guidance problem is expanded from two-dimensional plane to three-dimensional space, the motion model between UAV and target in three-dimensional space is established and the expression of time-to-go estimation under time-varying velocity is derived. Finally, according to whether there is the communication among UAVs under the condition of time-varying velocity, a multiple UAVs three-dimensional cooperative guidance law based on desired impact time and a multiple UAVs three-dimensional cooperative guidance law based on coordination variables are designed, respectively. The simulation results show that the cooperative guidance law with finite time convergence on two-dimensional plan and the three-dimensional cooperative guidance law with impact time constraint proposed in this paper are effective, which can both realize the saturation attack under the time-varying velocity.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 29755-29763
Author(s):  
Mu Lin ◽  
Xiangjun Ding ◽  
Chunyan Wang ◽  
Li Liang ◽  
Jianan Wang

Author(s):  
Jun-Yong Lee ◽  
Hyeong-Guen Kim ◽  
H Jin Kim

This article proposes an impact-time-control guidance law that can keep a non-maneuvering moving target in the seeker’s field of view (FOV). For a moving target, the missile calculates a predicted intercept point (PIP), designates the PIP as a new virtual stationary target, and flies to the PIP at the desired impact time. The main contribution of the article is that the guidance law is designed to always lock onto the moving target by adjusting the guidance gain. The guidance law for the purpose is based on the backstepping control technique and designed to regulate the defined impact time error. In this procedure, the desired look angle, which is a virtual control, is designed not to violate the FOV limit, and the actual look angle of the missile is kept within the FOV by tracking the desired look angle. To validate the performance of the guidance law, numerical simulation is conducted with different impact times. The result shows that the proposed guidance law intercepts the moving target at the desired impact time maintaining the target lock-on condition.


2020 ◽  
Vol 33 (11) ◽  
pp. 2946-2958
Author(s):  
Yang TANG ◽  
Xiaoping ZHU ◽  
Zhou ZHOU ◽  
Fei YAN

Sign in / Sign up

Export Citation Format

Share Document