Research progress of the ultra-short term power forecast for PV power generation: A review

Author(s):  
Xianping Zhu ◽  
Shaowu Li ◽  
Yan Li ◽  
Jingxun Fan
Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1717
Author(s):  
Wanxing Ma ◽  
Zhimin Chen ◽  
Qing Zhu

With the fast expansion of renewable energy systems during recent years, the stability and quality of smart grids using solar energy have been challenged because of the intermittency and fluctuations. Hence, forecasting photo-voltaic (PV) power generation is essential in facilitating planning and managing electricity generation and distribution. In this paper, the ultra-short-term forecasting method for solar PV power generation is investigated. Subsequently, we proposed a radial basis function (RBF)-based neural network. Additionally, to improve the network generalization ability and reduce the training time, the numbers of hidden layer neurons are limited. The input of neural network is selected as the one with higher Spearman correlation among the predicted power features. The data are normalized and the expansion parameter of RBF neurons are adjusted continuously in order to reduce the calculation errors and improve the forecasting accuracy. Numerous simulations are carried out to evaluate the performance of the proposed forecasting method. The mean absolute percentage error (MAPE) of the testing set is within 10%, which show that the power values of the following 15 min. can be predicted accurately. The simulation results verify that our method shows better performance than other existing works.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 4017 ◽  
Author(s):  
Dukhwan Yu ◽  
Wonik Choi ◽  
Myoungsoo Kim ◽  
Ling Liu

The problem of Photovoltaic (PV) power generation forecasting is becoming crucial as the penetration level of Distributed Energy Resources (DERs) increases in microgrids and Virtual Power Plants (VPPs). In order to improve the stability of power systems, a fair amount of research has been proposed for increasing prediction performance in practical environments through statistical, machine learning, deep learning, and hybrid approaches. Despite these efforts, the problem of forecasting PV power generation remains to be challenging in power system operations since existing methods show limited accuracy and thus are not sufficiently practical enough to be widely deployed. Many existing methods using long historical data suffer from the long-term dependency problem and are not able to produce high prediction accuracy due to their failure to fully utilize all features of long sequence inputs. To address this problem, we propose a deep learning-based PV power generation forecasting model called Convolutional Self-Attention based Long Short-Term Memory (LSTM). By using the convolutional self-attention mechanism, we can significantly improve prediction accuracy by capturing the local context of the data and generating keys and queries that fit the local context. To validate the applicability of the proposed model, we conduct extensive experiments on both PV power generation forecasting using a real world dataset and power consumption forecasting. The experimental results of power generation forecasting using the real world datasets show that the MAPEs of the proposed model are much lower, in fact by 7.7%, 6%, 3.9% compared to the Deep Neural Network (DNN), LSTM and LSTM with the canonical self-attention, respectively. As for power consumption forecasting, the proposed model exhibits 32%, 17% and 44% lower Mean Absolute Percentage Error (MAPE) than the DNN, LSTM and LSTM with the canonical self-attention, respectively.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6447
Author(s):  
Ling Liu ◽  
Fang Liu ◽  
Yuling Zheng

Forecasting uncertainties limit the development of photovoltaic (PV) power generation. New forecasting technologies are urgently needed to improve the accuracy of power generation forecasting. In this paper, a novel ultra-short-term PV power forecasting method is proposed based on a deep belief network (DBN)-based Takagi-Sugeno (T-S) fuzzy model. Firstly, the correlation analysis is used to filter redundant information. Furthermore, a T-S fuzzy model, which integrates fuzzy c-means (FCM) for the fuzzy division of input variables and DBN for fuzzy subsets forecasting, is developed. Finally, the proposed method is compared to a benchmark DBN method and the T-S fuzzy model in case studies. The numerical results show the feasibility and flexibility of the proposed ultra-short-term PV power forecasting approach.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 289 ◽  
Author(s):  
Biaowei Chen ◽  
Peijie Lin ◽  
Yunfeng Lai ◽  
Shuying Cheng ◽  
Zhicong Chen ◽  
...  

Improving the accuracy of very-short-term (VST) photovoltaic (PV) power generation prediction can effectively enhance the quality of operational scheduling of PV power plants, and provide a reference for PV maintenance and emergency response. In this paper, the effects of different meteorological factors on PV power generation as well as the degree of impact at different time periods are analyzed. Secondly, according to the characteristics of radiation coordinate, a simple radiation classification coordinate (RCC) method is proposed to classify and select similar time periods. Based on the characteristics of PV power time-series, the selected similar time period dataset (include power output and multivariate meteorological factors data) is reconstructed as the training dataset. Then, the long short-term memory (LSTM) recurrent neural network is applied as the learning network of the proposed model. The proposed model is tested on two independent PV systems from the Desert Knowledge Australia Solar Centre (DKASC) PV data. The proposed model achieving mean absolute percentage error of 2.74–7.25%, and according to four error metrics, the results show that the robustness and accuracy of the RCC-LSTM model are better than the other four comparison models.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5978
Author(s):  
Athanasios I. Salamanis ◽  
Georgia Xanthopoulou ◽  
Napoleon Bezas ◽  
Christos Timplalexis ◽  
Angelina D. Bintoudi ◽  
...  

Accurately forecasting power generation in photovoltaic (PV) installations is a challenging task, due to the volatile and highly intermittent nature of solar-based renewable energy sources. In recent years, several PV power generation forecasting models have been proposed in the relevant literature. However, there is no consensus regarding which models perform better in which cases. Moreover, literature lacks of works presenting detailed experimental evaluations of different types of models on the same data and forecasting conditions. This paper attempts to fill in this gap by presenting a comprehensive benchmarking framework for several analytical, data-based and hybrid models for multi-step short-term PV power generation forecasting. All models were evaluated on the same real PV power generation data, gathered from the realisation of a small scale pilot site in Thessaloniki, Greece. The models predicted PV power generation on multiple horizons, namely for 15 min, 30 min, 60 min, 120 min and 180 min ahead of time. Based on the analysis of the experimental results we identify the cases, in which specific models (or types of models) perform better compared to others, and explain the rationale behind those model performances.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 91183-91192 ◽  
Author(s):  
Mohammad Monfared ◽  
Meghdad Fazeli ◽  
Richard Lewis ◽  
Justin Searle

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 436
Author(s):  
Hyung Keun Ahn ◽  
Neungsoo Park

Photovoltaic (PV) power fluctuations caused by weather changes can lead to short-term mismatches in power demand and supply. Therefore, to operate the power grid efficiently and reliably, short-term PV power forecasts are required against these fluctuations. In this paper, we propose a deep RNN-based PV power short-term forecast. To reflect the impact of weather changes, the proposed model utilizes the on-site weather IoT dataset and power data, collected in real-time. We investigated various parameters of the proposed deep RNN-based forecast model and the combination of weather parameters to find an accurate prediction model. Experimental results showed that accuracies of 5 and 15 min ahead PV power generation forecast, using 3 RNN layers with 12 time-step, were 98.0% and 96.6% based on the normalized RMSE, respectively. Their R2-scores were 0.988 and 0.949. In experiments for 1 and 3 h ahead of PV power generation forecasts, their accuracies were 94.8% and 92.9%, respectively. Also, their R2-scores were 0.963 and 0.927. These experimental results showed that the proposed deep RNN-based short-term forecast algorithm achieved higher prediction accuracy.


2020 ◽  
Vol 26 (3) ◽  
pp. 79-83 ◽  
Author(s):  
Emrah Dokur

Accurate predictions of solar photovoltaic (PV) power generation at different time horizons are essential for reliable operation of energy management systems. The output power of a PV power plant is dependent on non-linear and intermittent environmental factors, such as solar irradiance, wind speed, relative humidity, etc. Intermittency and randomness of solar PV power effect precision of estimation. To address the challenge, this paper presents a Swarm Decomposition Technique (SWD) based hybrid model as a novel approach for very short-term (15 min) solar PV power generation forecast. The original contribution of the study is to investigate use of SWD for solar data forecast. The solar PV power generation data with hourly resolution obtained from the field (grid connected, 857.08 kWp Akgul Solar PV Power Plant in Turkey) are used to develop and validate the forecast model. Specifically, the analysis showed that the hybrid model with SWD technique provides highly accurate predictions in cloudy periods.


2020 ◽  
Author(s):  
Angelo Pelisson ◽  
Thiago Covoes ◽  
Anderson Spengler ◽  
Pablo Jaskowiak

Electricity consumption is growing rapidly worldwide. Renewable energy resources, such as solar energy, play a crucial role in this scenario, contributing to satisfy demand sustainability. Although the share of Photovoltaic (PV) power generation has increased in the past years, PV systems are quite sensitive to climatic and meteorological conditions, leading to undesirable power production variability. In order to improve energy grid stability, reliability, and management, accurate forecasting models that relate operational conditions to power output are needed. In this work we evaluate the performance of regression methods applied to forecast short term (next day) energy production of a PV Plant. Specifically, we consider five regression methods and different configurations of feature sets. Our results suggest that MLP and SVR provide the best forecasting results, in general. Also, although features based on different solar irradiance levels play a key role in predicting power generation, the use of additional features can improve prediction results.


Sign in / Sign up

Export Citation Format

Share Document