Intelligent appliance control algorithm for optimizing user energy demand in smart homes

Author(s):  
Rahul Mehta ◽  
Dipti Srinivasan ◽  
Pranjal Verma
Author(s):  
Souhil Mouassa ◽  
Marcos Tostado-Véliz ◽  
Francisco Jurado

Abstract With emergence of automated environments, energy demand increased with unexpected ratio, especially total electricity consumed in the residential sector. This unexpected increase in demand in energy brings a challenging task of maintaining the balance between supply and demand. In this work, a robust artificial ecosystem-inspired optimizer based on demand-side management is proposed to provide the optimal scheduling pattern of smart homes. More precisely, the main objectives of the developed framework are: i) Shifting load from on-peak hours to off-peak hours while fulfilling the consumer intends to reduce electricity-bills. ii) Protect users comfort by improving the appliances waiting time. Artificial ecosystem optimizer (AEO) algorithm is a novel optimization technique inspired by the energy flocking between all living organisms in the ecosystem on earth. Demand side management (DSM) program is modeled as an optimization problem with constraints of starting and ending of appliances. The proposed optimization technique based DSM program is evaluated on two different pricing schemes with considering two operational time intervals (OTI). Extensive simulation cases are carried out to validate the effectiveness of the proposed optimizer based energy management scheme. AEO minimizes total electricity-bills while keeping the user comfort by producing optimum appliances scheduling pattern. Simulation results revealed that the proposed AEO achieved a minimization electricity-bill up to 10.95, 10.2% for RTP and 37.05% for CPP for the 12 and 60 min operational time interval (OTI), respectively, in comparison to other results achieved by other optimizers. On the other hand peak to average ratio (PAR) is reduced to 32.9% using RTP and 31.25% using CPP tariff.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 711 ◽  
Author(s):  
Heiko Dunkelberg ◽  
Maximilian Sondermann ◽  
Henning Meschede ◽  
Jens Hesselbach

In the fight against anthropogenic climate change, the benefit of the integration of fluctuating renewable energies (wind and photovoltaics) into the electricity grid is a widely proved concept. At the same time, a fluctuating and decentralised supply of energy, especially at lower voltage levels, leads to a local discrepancy in the power balance between generation and consumption. A possible solution in connection with demand side management is the grid-oriented flexibilisation of energy demand. The present study shows how the use of an innovative hybrid-redundant high-temperature heat system (combined heat and power (CHP), power-to-heat system (PtH), gas boiler) can contribute to a flexibilisation of the electrical energy demand of plastics processing companies. In this context, the flexibilisation potential of a company is to be understood as the grid-related change of the energy supply through a change of the energy sources within the framework of the process heat supply. For this purpose, an omniscient control algorithm is developed that specifies the schedule of the individual system components. A sensitivity analysis is used to test the functionality of the control algorithm. Determination of the electrical flexibilisation potential is carried out via a comprehensive simulation study using Monte Carlo methods. For this purpose, the residual load curves of four characteristic distribution grids with a high share of renewable energies as well as heat load profiles of injection moulding machines are taken into consideration. A frequency distribution provides information on the electrical flexibilisation potential to be expected depending on the various combinations. The evaluation is carried out using a specially introduced logic, which identifies grid-relevant changes in the company's power consumption as flexibilisation potential based on a reference load curve. The results show that a reliable energy supply for production is possible despite flexibilisation. Depending on the grid under consideration, there are differences in the exploitation of the potential, which essentially depends on the installed renewable capacity. Depending on the scenario under consideration, an average of up to 1486 kWhel can be shifted in a positive direction and 1199 kWhel in a negative direction.


2017 ◽  
Vol 1 (3) ◽  
pp. 372-380 ◽  
Author(s):  
S. N. Akshay Uttama Nambi ◽  
R. Venkatesha Prasad ◽  
Antonio R. Lua

2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Richard Bäumer ◽  
Uwe Starossek

The twin rotor damper (TRD) is a newly developed active mass damper. It is presented here along with respective closed-loop control algorithms. The greatest advantage of the device is its low power demand when operated in a preferred mode of operation, the continuous rotation mode. In this mode, two eccentric masses rotate in opposite directions about two parallel axes with a mostly constant angular velocity. The resultant force is harmonic and can be used for the control of structural vibrations. To study the effect of the TRD on a single degree-of-freedom (SDOF) oscillator, various state variables are introduced and a feedback control algorithm is developed for the continuous rotation mode of operation. For reaching and leaving the continuous rotation mode, ramp-up and ramp-down trajectories are developed. These trajectories are designed such that the power and energy demand as well as the mechanical wear on the device are minimized. The feedback control algorithm is validated on a test setup. The damping effectiveness and the low power and energy demands encourage further investigation of the device under stochastic loading and comparisons with other active mass dampers.


2020 ◽  
Vol 10 (18) ◽  
pp. 6266-6273
Author(s):  
Yalan Zhang ◽  
Zebin Yu ◽  
Ronghua Jiang ◽  
Jung Huang ◽  
Yanping Hou ◽  
...  

Excellent electrochemical water splitting with remarkable durability can provide a solution to satisfy the increasing global energy demand in which the electrode materials play an important role.


2020 ◽  
Vol 39 (5) ◽  
pp. 6339-6350
Author(s):  
Esra Çakır ◽  
Ziya Ulukan

Due to the increase in energy demand, many countries suffer from energy poverty because of insufficient and expensive energy supply. Plans to use alternative power like nuclear power for electricity generation are being revived among developing countries. Decisions for installation of power plants need to be based on careful assessment of future energy supply and demand, economic and financial implications and requirements for technology transfer. Since the problem involves many vague parameters, a fuzzy model should be an appropriate approach for dealing with this problem. This study develops a Fuzzy Multi-Objective Linear Programming (FMOLP) model for solving the nuclear power plant installation problem in fuzzy environment. FMOLP approach is recommended for cases where the objective functions are imprecise and can only be stated within a certain threshold level. The proposed model attempts to minimize total duration time, total cost and maximize the total crash time of the installation project. By using FMOLP, the weighted additive technique can also be applied in order to transform the model into Fuzzy Multiple Weighted-Objective Linear Programming (FMWOLP) to control the objective values such that all decision makers target on each criterion can be met. The optimum solution with the achievement level for both of the models (FMOLP and FMWOLP) are compared with each other. FMWOLP results in better performance as the overall degree of satisfaction depends on the weight given to the objective functions. A numerical example demonstrates the feasibility of applying the proposed models to nuclear power plant installation problem.


2020 ◽  
pp. 149-159
Author(s):  
Jatinder Kataria ◽  
Saroj Kumar Mohapatra ◽  
Amit Pal

The limited fossil reserves, spiraling price and environmental impact due to usage of fossil fuels leads the world wide researchers’ interest in using alternative renewable and environment safe fuels that can meet the energy demand. Biodiesel is an emerging renewable alternative fuel to conventional diesel which can be produced from both edible and non-edible oils, animal fats, algae etc. The society is in dire need of using renewable fuels as an immediate control measure to mitigate the pollution level. In this work an attempt is made to review the requisite and access the capability of the biodiesel in improving the environmental degradation.


Author(s):  
Molla Asmare ◽  
Mustafa Ilbas

Nowadays, the most decisive challenges we are fronting are perfectly clean energy making for equitable and sustainable modern energy access, and battling the emerging alteration of the climate. This is because, carbon-rich fuels are the fundamental supply of utilized energy for strengthening human society, and it will be sustained in the near future. In connection with this, electrochemical technologies are an emerging and domineering tool for efficiently transforming the existing scarce fossil fuels and renewable energy sources into electric power with a trivial environmental impact. Compared with conventional power generation technologies, SOFC that operate at high temperature is emerging as a frontrunner to convert the fuels chemical energy into electric power and permits the deployment of varieties of fuels with negligible ecological destructions. According to this critical review, direct ammonia is obtained as a primary possible choice and price-effective green fuel for T-SOFCs. This is because T-SOFCs have higher volumetric power density, mechanically stable, and high thermal shocking resistance. Also, there is no sealing issue problem which is the chronic issues of the planar one. As a result, the toxicity of ammonia to use as a fuel is minimized if there may be a leakage during operation. It is portable and manageable that can be work everywhere when there is energy demand. Besides, manufacturing, onboard hydrogen deposition, and transportation infrastructure connected snags of hydrogen will be solved using ammonia. Ammonia is a low-priced carbon-neutral source of energy and has more stored volumetric energy compared with hydrogen. Yet, to utilize direct NH3 as a means of hydrogen carrier and an alternative green fuel in T-SOFCs practically determining the optimum operating temperatures, reactant flow rates, electrode porosities, pressure, the position of the anode, thickness and diameters of the tube are still requiring further improvement. Therefore, mathematical modeling ought to be developed to determine these parameters before planning for experimental work. Also, a performance comparison of AS, ES, and CS- T-SOFC powered with direct NH3 will be investigated and best-performed support will be carefully chosen for practical implementation and an experimental study will be conducted for verification based on optimum parameter values obtained from numerical modeling.


Sign in / Sign up

Export Citation Format

Share Document