Civil motorcycle aerodynamic characteristics analysis based on CFD method

Author(s):  
Pan Ke-cheng ◽  
Zhang Ying-chao ◽  
Li Jie ◽  
Meng Tuo
2013 ◽  
Vol 300-301 ◽  
pp. 62-67
Author(s):  
Kun Ye ◽  
Ren Xian Li

Cutting is an effective device to reduce crosswind loads acting on trains. The cutting depth, width and gradient of slope are important factors for design and construction of cutting. Based on numerical analysis methods of three-dimensional viscous incompressible aerodynamics equations, aerodynamic side forces and yawing moments acting on the high-speed train, with different depths and widths of cutting,are calculated and analyzed under crosswinds,meanwhile the relationship of the gradient of cutting slope and transverse aerodynamic forces acting on trains are also studied. Simulation results show that aerodynamic side forces and yawing moments acting on the train(the first, middle and rear train)decrease with the increase of cutting depth. The relationship between transverse forces (moments) coefficients acting on the three sections and the cutting depth basically is the three cubed relation. The bigger is cutting width,the worse is running stability of train. The relationship between yawing moments coefficients acting each body of the train and the cutting width approximately is the three cubed relation. The transverse Aerodynamic forces decreased gradually with the increase of the gradient of cutting slope, the relationship between yawing moments coefficients acting each body of the train and the gradient of cutting slope basically is the four cubed relation.


2020 ◽  
Vol 10 (10) ◽  
pp. 3404
Author(s):  
Bing Ji ◽  
Zenggang Zhu ◽  
Shijun Guo ◽  
Si Chen ◽  
Qiaolin Zhu ◽  
...  

An investigation into the aerodynamic characteristics has been presented for a bio-inspired flapping wing aircraft. Firstly, a mechanism has been developed to transform the usual rotation powered by a motor to a combined flapping and pitching motion of the flapping wing. Secondly, an experimental model of the flapping wing aircraft has been built and tested to measure the motion and aerodynamic forces produced by the flapping wing. Thirdly, aerodynamic analysis is carried out based on the measured motion of the flapping wing model using an unsteady aerodynamic model (UAM) and validated by a computational fluid dynamics (CFD) method. The difference of the average lift force between the UAM and CFD method is 1.3%, and the difference between the UAM and experimental results is 18%. In addition, a parametric study is carried out by employing the UAM method to analyze the effect of variations of the pitching angle on the aerodynamic lift and drag forces. According to the study, the pitching amplitude for maximum lift is in the range of 60°~70° as the flight velocity decreases from 5 m/s to 1 m/s during landing.


Author(s):  
Yi-yang Ma ◽  
Qi-jun Zhao ◽  
Guo-qing Zhao

In order to improve the aerodynamic characteristics of rotor, a new active flow control strategy by combining a synthetic jet actuator and a variable droop leading-edge or a trailing-edge flap has been proposed. Their control effects are numerically investigated by computational fluid dynamics (CFD) method. The validated results indicate that variable droop leading-edge and synthetic jet can suppress the formation of dynamic stall vortex and delay flow separation over rotor airfoil. Compared with the baseline state, Cdmax and Cmmax are significantly reduced. Furthermore, parametric analyses on dynamic stall control of airfoil by the combinational method are conducted, and it indicates that the aerodynamic characteristics of the oscillating rotor airfoil can be significantly improved when the non-dimensional frequency ( k*) of variable droop leading-edge is about 1.0. At last, simulations are conducted for the flow control of rotor by the combinational method. The numerical results indicate that large droop angle of variable droop leading-edge can better reduce the torque coefficient of rotor and the trailing-edge flap has the capability of increasing the thrust of rotor. Also, the synthetic jet could further improve the aerodynamic characteristics of rotor.


2013 ◽  
Vol 373-375 ◽  
pp. 20-23
Author(s):  
Hai Tao Bao ◽  
Cheng Wang

The aerodynamic characteristics of ordinary vehicle have been studied by lots of scholars, while few people pay enough attention to the aerodynamic characteristics in the bottom of the car. As the requirements of regulations for the performance of the car continues to increase, Analysis of Aerodynamic Characteristics of the car is much more necessary now. In this paper , by using CFD method and getting benefit from the established CFD software, we gave external velocity field and pressure field of the car. The data was analyzed and summarized and the computational results are obtained. In the final analysis for the flatness in the bottom of the car influence on aerodynamic characteristics.This paper has done some useful attempts, and it will provide specific reference significance to the numerical simulation on design of the car in the future.


Author(s):  
Illya Bilous ◽  
Illya Kryvohatko ◽  
Yurii Yakovlev

As of recent rapid development in the field of UAVs, unusual aerodynamic practices can be used, for example, the tandem scheme. In early planning stages, it’s important to evaluate aerodynamic characteristics of the chosen scheme and to approximate its balancing losses, as it impacts the stability and controllability of the craft. The most effective way of aerodynamic characteristics analysis is done using wind tunnels. However, it requires considerable investments in both financial terms and time, when designing the model, conducting the experiment and processing the results. Because of that, it’s worthwhile to consider the simple CFD calculations (XFOIL). This paper calculates aerodynamic characteristics of a tandem-scheme based “A-8” aircraft using XFLR5 analysis tool with the results compared to a real wind tunnel experiment. The overall conclusion of the paper is a recommendation to consider XFLR5 for early planning stages for advanced balancing losses calculation approximation.


2020 ◽  
Vol 10 (4) ◽  
pp. 1272 ◽  
Author(s):  
Yao Lei ◽  
Hengda Wang

In order to study the aerodynamic performance of the quadrotor with different rotor spacings in hover, experiments were performed together with numerical simulations. For experimental study, an experimental platform was designed to measure the thrust and power consumption of the quadrotor with different rotor spacings (L/R = 2.2, 2.6, 3.0, 3.2, 3.6, and 4.0), and to attempt to find out the optimal rotor configuration which makes the quadrotor have the best aerodynamic performance. In addition, the pressure distribution, vorticity of the blade tip, and velocity vector of quadrotor in the flow field were obtained by Computational Fluid Dynamics (CFD) method to visually analyze the aerodynamic interference between adjacent rotors. By the comparison of experimental results and numerical simulations, the final results show that the aerodynamic performance of the quadrotor varies obviously with the change of rotor spacing, and it has a negative impact on hover efficiency if rotor spacing is too much small or large. The rotors pacing at L/R = 3.6 with larger thrust and smaller power is considered to be the best aerodynamic configuration for the quadrotor with better aerodynamic characteristics. Furthermore, compared with the isolated rotor, moderate aerodynamic interference is proved to help improve the aerodynamic performance of the quadrotor with a larger thrust, especially for a rotor spacing at L/R = 3.6.


Sign in / Sign up

Export Citation Format

Share Document